
Understanding Ontological Engineering

Vladan Devedži ́ c

Ontological engineering has garnered increasing attention over the last few years, as
researchers have recognized ontologies are not just for knowledge-based systems—all
software needs models of the world, and hence can make use of ontologies at design
time [1]. A recent survey of the field [4] suggests developers of practical AI systems
may especially benefit from their use. This survey earmarked several application
classes that benefit from using ontologies, including natural language processing,
intelligent information retrieval (especially from the Internet), virtual organizations,
and simulation and modeling.

Several special issues of journals and magazines dedicated to the field of ontolo-
gies [1] have described current trends in the field of ontologies, which include creat-
ing large-scale ontologies [6], defining expressive languages for representing
ontological knowledge [7], and implementing systems that support ontology-based
applications [12]. Unfortunately, a vast majority of these articles don’t cover the rela-
tions between ontological engineering and other disciplines. As a result, specialists
from other disciplines struggle to understand the benefits of ontologies, and to map
the terminology of ontological engineering to their own fields. This article illustrates
what ontological engineering borrows from other disciplines and what feedback it can
provide to other disciplines. Also, it strives to clarify the skills useful in ontological
engineering.

Ontologies, or explicit representations of domain concepts, provide the basic
structure or armature around which knowledge bases can be built [10]. Each ontol-
ogy is a system of concepts and their relations, in which all concepts are defined and
interpreted in a declarative way. The system defines the vocabulary of a problem
domain and a set of constraints on how terms can be combined to model the domain.
In a distributed environment, agents use ontologies to establish communication at
the knowledge level using specific languages and protocols. Ontologies are explicit
representations of agents’ commitments to a model of the relevant world; hence they
enable knowledge sharing and reuse.

Ontological engineering encompasses a set of activities conducted during con-
ceptualization, design, implementation and deployment of ontologies. Ontological
engineering covers topics including philosophy, metaphysics, knowledge representa-

136 April 2002/Vol. 45, No. 4ve COMMUNICATIONS OF THE ACM

Vladan Devedžić (devedzic@galeb.etf.bg.ac.yu) is an associate professor in the department of information
systems, at the FON – School of Business Administration, at the University of Belgrade in Yugoslavia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM



tion formalisms, development methodology, knowledge sharing and reuse, knowl-
edge management, business process modeling, commonsense knowledge, systemati-
zation of domain knowledge, information retrieval from the Internet,
standardization, and evaluation [8]. It also gives us design rationale of a knowledge
base, helps define the essential concepts of the world of interest, allows for a more dis-
ciplined design of a knowledge base, and enables knowledge accumulation.

Déjà Vu in Ontological Engineering
Literature on ontologies and ontological engineering usually covers the concepts
shown in Figure 1. However, other seldom-discussed viewpoints are useful for AI
practitioners. If we put ontological engineering in the context of other disciplines,
many similarities and analogies arise. These similarities allow practitioners to make
connections between ontological engineering and other disciplines, to bridge com-
prehension gaps, and to see known concepts and practices in another light. Desirable
qualities for ontologies, such as being decomposable, extensible, maintainable, mod-
ular and interfacable, tied to the information being analyzed, universally understood,
and translatable, are also desirable for interoperable software components, or even
classes of objects in object-oriented design. Practitioners from other fields may use
different terminology, but its meanings are often similar. Hence the following ques-
tion naturally arises: can ontologies practitioners borrow from other disciplines? Fig-
ure 2 shows aspects of two general disciplines that can help develop ontologies at the
specification and conceptualization stage: modeling and metamodeling. In practice,
knowledge of these disciplines helps:

• Organize the knowledge acquisition process;
• Specify the ontology’s primary objective, purpose, granularity, and scope; and
• Build its initial vocabulary and organize taxonomy in an informal or semiformal

way, possibly using an intermediate representation.

COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4ve 137

Figure 1. General themes of ontological engineering.



Modeling. Ontologies are specific, high-level models of knowledge underlying all
things, concepts, and phenomena. As with other models, ontologies do not represent
the entire world of interest. Rather, ontology designers select aspects of reality rele-
vant to their task [12]. In the domain of books, for example, the ontology designer
selects one set of book attributes when developing the ontology of a library, and quite
a different set when developing the ontology of bookbinding. All models follow prin-
ciples and constraints, which are called concept relations and axioms.

Although there are different ways to represent ontologies, ontological engineers
most frequently use hierarchical modeling (at least at the conceptualization level) [2, 6].
They often represent concept hierarchies and taxonomies in layers, and use graphs to
visually enhance the representation. The layers in ontology representation range from
domain-independent (core) to task- and domain-specific. Thus, ontologies contain
knowledge of appropriate hierarchical and/or layered models of the relevant world.

Metamodeling. Conceptualizing and specifying ontologies have a strong meta-
modeling flavor. A metamodel, or conceptual model of a modeling technique,
improves the rigor of different but similar models [3]. Ontologies do the same for
knowledge models. Without ontologies, knowledge bases representing knowledge of
the same domain are generally incompatible even if they use similar knowledge mod-
els. The good thing about using such metamodeling is we never sacrifice the useful-
ness of any specific model. The ontology simply provides the skeleton for the
corresponding models of the domain knowledge.

Generally, an ontology is a metamodel describing how to build models. Its com-
ponents—the concepts it defines and the relations between them—are always
(re)used as building blocks when modeling parts of the domain knowledge. When
developing a practical software system, it helps if our tools have some built-in knowl-
edge—a metamodel or an ontology—of the models we deploy. The metamodeling
function of the ontology makes the tools intelligent.

Many potentially useful parallels exist between ontological engineering and soft-
ware engineering disciplines such as software architectures and software patterns, but
few have been discussed explicitly or used in practical developments. Many practi-
tioners understand similarities between ontological engineering and the object-ori-
ented paradigm, and similarities between phases of the ontology development and
software development processes, especially when looking at special-purpose software
tools for developing ontologies, such as Ontolingua from Stanford University, or
ODE from Polytechnic University of Madrid [7]. But practitioners can benefit from
knowing more about such useful parallels. Certain software engineering disciplines

138 April 2002/Vol. 45, No. 4ve COMMUNICATIONS OF THE ACM

Figure 2. Modeling and metamodeling are useful to ontological engineering at the specification and
conceptualization level.



and issues rarely discussed by ontology researchers can help advance ontological engi-
neering: software architectures, programming languages and compilers, traditional
software engineering, object-oriented analysis and design, design patterns, and com-
ponent-based software engineering (see Figure 3).

Software architectures. Suppose you are discussing the basics of ontological engi-
neering with a software engineer, whose field involves designing and specifying the
overall system structure and underlying organization. Conveying that ontologies are
architectural armatures for building knowledge bases, models, and software architec-
tures is probably one of the best ways to help such an individual grasp the basics of
ontologies. Architectural style, an important concept in the field of software archi-
tecture, characterizes a family of systems related by shared structural and semantic
properties. Mary Shaw describes several common architectural styles [9]. A style typ-
ically defines a vocabulary of design elements, design rules (constraints) for composi-
tions of those elements, semantic interpretation of design element compositions, and
analyses on systems built in that style. Many successful designs can share a style.

Styles contain condensed skeletons of the architectural knowledge gained by
experienced software designers, and provide a means to reuse that knowledge. For
example, layered style is suitable for applications involving distinct classes of services
that can be arranged hierarchically. Designers often define layers for: basic system-
level services, utilities appropriate to many applications, and specific application
tasks. Similarly, some ontologies structure knowledge in layers to separate the use-spe-
cific knowledge from the core (and more reusable) knowledge [8, 12]. Other archi-

COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4ve 139

Figure 3. Software engineering disciplines useful to ontological engineering.



tectural styles that help define ontological engineering solutions include pipeline and
data abstraction [9].

Programming languages and compilers. Special-purpose languages/tools for imple-
menting ontologies, such as Ontolingua, CycL, and LOOM, use a frame-based for-
malism, a logic-based formalism, or both [4, 6, 7, 12]. For example, Ontolingua is a
frame-based language that uses KIF (Knowledge Interchange Format), a language for
publication and knowledge communication that has notation and semantics of an
extended version of first-order predicate calculus. It enables writing knowledge-level
specifications, independent of particular data or programming languages, and trans-
lating knowledge bases from one specialized representation language into another.
Several other languages/tools for building ontologies also use such a translation
approach, which enables the building of ontologies directly at the knowledge level.
This approach eliminates the need to master implementation languages and use trans-
lators to translate from the knowledge level to the implementation level. But there are
problems with this approach. First-order logic is rather restricted, to enable painless
translation of rich and often ill-structured or unstructured knowledge-level specifica-
tions into well-formed predicate calculus expressions. Also, there are reports of prob-
lems using specific translators. For example, when using the Ontolingua translator to
produce the equivalent Loom ontology of time from a prebuilt Ontolingua-based
ontology, the resulting translation had value only as a first draft [12]. Extensive man-
ual adaptations of the translated ontology were necessary in order to make it fully
applicable.

Practitioners should note more recent languages and tools make extensive use of
techniques and tricks from the compiler theory to improve the quality and the capa-
bilities of the translation process. For example, the ODE environment uses a generic
translator that allows the user to specify the ontology in a user-oriented internal rep-
resentation and translate it automatically into the target language (in ODE’s case, into
Ontolingua) [7]. The translator uses a grammar to declaratively express the concep-
tual model (the internal representation) in the BNF form. For each type of valid def-
inition in the language, there is a table that relates the terms used in the
transformation rules to the terms employed in the conceptual model. It is easy to
build a new translator by merely changing the rules that identify the transformation
rules of the terms to be generated, and changing the appropriate table relating the
conceptualization to the implementation.

It is also useful to consider other programming languages besides special-purpose
languages from the perspective of ontological engineering. In addition to defining a
general ontology of a programming language, with concepts like identifier, reserved
word, and construct, one may abstract an ontological skeleton from any programming
language. This is actually a hint for practitioners that many ontologies implicitly exist
in programming languages and should not be reinvented. For example, Java has at least
two obvious but rarely noted parallels with ontological engineering concepts:

• Classes from Java class libraries make up a hierarchy (with the Object class on
top) that can be viewed as an extremely well elaborated ontology; and

• Java bytecodes are actually an “interlingua” any Java interpreter can understand,
in a common interchange format that makes Java fully interoperable and plat-
form-independent—the same idea behind KIF and other ontology-related lan-
guages.

140 April 2002/Vol. 45, No. 4ve COMMUNICATIONS OF THE ACM



COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4ve 141

The GKS (Graphical Kernel System) language and standard for creating graphi-
cal primitives also represents an ontology of such primitives. Various platform-specific
implementations of GKS libraries allow for sharing and reuse of GKS primitives in
many graphical systems.

Traditional software engineering. Since the AI community develops ontologies,
and uses special-purpose tools and languages to do so, many think of ontologies as
a trend involving sophisticated methodology and technology. But an ontology is
always about entities and relationships, and often methodology from traditional
software engineering, such as using the ER model, top-down decomposition strat-
egy, and structured system analysis, are used to represent it. For example, the
Methontology framework for developing ontologies [7] proposes a close relative of
the traditional waterfall process of software development for an ontology develop-
ment lifecycle. Moreover, the entire chemicals ontology developed using the
Methontology framework is stored in a relational database, which can encode its
ontology in its data dictionary [8]. Fridman-Noy and Hafner discuss examples of
using online lexical reference systems and electronic dictionaries as general ontolo-
gies [4]. All design criteria for ontologies, such as clarity, extensibility, coherence,
and minimal encoding bias also represent design criteria for software systems mod-
ules. Ontology researchers and developers can explore a large variety of iterative and
incremental traditional software development methodologies for new ideas in onto-
logical engineering.

Object-oriented analysis and design. The processes of ontology development [7, 8,
12] nearly coincide with those of object-oriented analysis and design [3, 11]. In both
cases, it is important to assemble the domain vocabulary in the beginning, often start-
ing from the domain’s generic nouns, verbs, and adjectives. Object-oriented analysis
stresses different aspects than ontological analysis [8], but parallels are obvious. The
result of object-oriented analysis is a draft of the domain ontology relevant to the
application (although analysts don’t call that result an ontology). And as object-ori-
ented designers define classes, objects, hierarchies, interface functions, and system
behavior, ontological engineers use intermediate representations such as semantic net-
works, graphs, and tables to design hierarchies and other concept relationships. Both
types of specialists use templates to specify product details [3, 7]. Classes can be
merged or refined, as with ontologies. Class libraries and previous design specifica-
tions often provide reuse in object-oriented design, as do previously encoded and
publicly available ontologies.

One area of ontological engineering requiring additional efforts involves devel-
oping a generally accepted notation for representing ontologies. Software engineers
have used several different notations in object-oriented design over the past decade,
but all have converged to the Unified Modeling Language (UML) notation [3],
which provides a metamodel of object-oriented design. It defines graphical notation
for representing classes, objects, and their relationships in four different views (logi-
cal, use-case, component, and deployment), covering all practical aspects of object-
oriented design. It would be nice if ontological engineers had a standard notation that
everyone accepted, understood, and used in practice. Unified graphical representation
for such a meta-language could help construct visually rich and easy-to-use tools [12],
and would increase knowledge reuse at the design level, but unfortunately most
ontology developers currently use their own notation.



142 April 2002/Vol. 45, No. 4ve COMMUNICATIONS OF THE ACM

From the practitioner’s perspective, important differences exist between ontolog-
ical engineering and object-oriented analysis and design. “Ontological” means taking
a knowledge-level stance in describing a system [1], while “object-oriented” largely
refers to the means of design and implementation. In a semantic-based information
retrieval system, for example, ontologies specify the meaning of the concepts to be
searched for, while in the object-oriented design of such a system, ontologies repre-
sent the domain models. Object-oriented design languages like UML offer explicit
design methodology and notation for all design artifacts, but ontological and meta-
modeling principles are only implicit in those languages [8]. In other words, an ontol-
ogy is what can be abstracted at the knowledge level from the corresponding class
diagrams, object diagrams, and use-case diagrams, represented in any object-oriented
notation such as UML. The role of ontology is to convey and explicitly specify
domain concepts, terms, definitions, relations, constraints, and other semantic con-
tents that object-oriented analysis and design should rely on and support.

Design patterns. Design patterns, described as “simple and elegant solutions to
specific problems in object-oriented software design” [5], provide a common vocab-
ulary for designers to communicate, document, and explore design alternatives. They
contain the knowledge and experience underlying many redesign and recoding efforts
to achieve greater software reuse and flexibility. Although design patterns and ontolo-
gies are not identical, practitioners should be aware these two concepts overlap, and
software patterns may be used along with other sources of ontology design in practi-
cal developments. Both concepts involve vocabularies, knowledge, and “architectural
armatures,” and describe concepts at the knowledge level. Ontologies are more com-
monsense-oriented, while design patterns are more concrete. But besides activities
such as software design, software patterns can also involve abstract activities such as
organizational and analysis patterns [2, 5]. One can draw an analogy between libraries
of ontologies and catalogues of software patterns. Design pattern catalogues are not
ready-to-use building blocks as are ontologies from libraries, but efforts are ongoing
to make them ready-to-use blocks. It doesn’t take a hard mental shift to view ontolo-
gies as abstract patterns, or knowledge skeletons of some domains. Likewise, it is easy
to understand software pattern templates as knowledge of how software pattern
ontologies may look. 

Component-based software engineering. A long-term objective of ontological engi-
neering is to build libraries of reusable knowledge components and knowledge-based
services that can be invoked over networks. Similarly, the component-based software
engineering field is struggling to develop repositories of reusable, pretested, interop-
erable, and independently upgradable software components that enable plug-and-
play design and software development. These objectives necessitate designing systems
from application elements constructed independently by developers using different
languages, tools, and computing platforms [11].

Can ontologies be components and vice versa? Ontologies are conceptually more
abstract than components, but it seems components can be parts of ontologies. It is
also possible to develop a component that fully corresponds to an ontology. Different
domains and ontologies can share components from repositories. Ontologies should
be, in a sense, a basis for designing and developing interoperable software compo-
nents in practice, since they can precisely define the semantics of components and
their parts, as well as the types of relations and communication between software
components.



Goals for Practitioners
For practitioners, developing an ontology is never simple-practical experience in
related disciplines is extremely important. The main purpose of developing ontolo-
gies is to clarify the domain’s structure of knowledge and to enable knowledge shar-
ing and reuse [1]. However, in practical terms ontological engineering means
achieving goals such as the following [1, 2, 6, 8]:

• Precisely defined terms and highly structured definitions of domain concepts,
not just text-based information;

• Consensus knowledge of a community of people;
• High expressiveness, enabling the ontology users to say what they wish to say;
• Coherence and interoperability of resulting knowledge bases;
• Stability and scalability of ontologies; and
• A foundation for solving a variety of problems and constructing multiple appli-

cations.

Although ontologies are rather content-related than representation-related, achieving
these goals calls for formalization and co-existence of artistic creativity and systemat-
ically applied knowledge from other disciplines. An ontology can be developed col-
laboratively by many distributed individuals and organizations with differing
expertise, goals, and interactions. Various communities of experts and practitioners
examine problems from different angles and are concerned with different dimensions
of the content’s semantics and representation. These individuals all need to properly
understand each other and meaningfully communicate their views of domain knowl-
edge to form meaningful higher-level knowledge: the ontology.

Once application developers are ready to use the ontology, they should be able to
convert it into a desired form, such as a database, object base, or knowledge base,
using a representation and language of their own choice. Thus, ontological engineer-
ing must rely on several content formats, translation frameworks, and development
strategies that reduce semantic ambiguity and allow for sharing and reusing knowl-
edge and practices from other disciplines.

Finally, developing ontologies in order to enable knowledge sharing and reuse
most often means it is actually intelligent agents and agent-based systems that will use
the ontologies for communicating and exchange knowledge among themselves. So,
ontological engineering also involves developing higher-level knowledge-based prod-
ucts that express the consensus knowledge of a community of agents.

Conclusion
Ontologies are needed in all software systems, which must always “know” about enti-
ties and their attributes and relationships in the relevant world. All systems need
knowledge, whether about data structures, methods, or algorithms. Domain ontology
encodes such knowledge, as in a relational database management system that “knows”
about its relational tables, data records, and their fields. Because ontologies are every-
where, they make possible to smoothly integrate artificial intelligence with other soft-
ware disciplines.

Putting ontological engineering in the context of other disciplines enables both
ontological engineers and other specialists to view their fields from different perspec-
tives. To specialists, drawing analogies between their fields and ontologies helps

COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4ve 143



explain the déjà vu feeling engendered by certain ontological engineering concepts.
To ontological engineers, awareness of such similarities may create new ways build
and improve ontologies. Building, using, and reusing ontologies requires much work
and many difficult modeling decisions. However, practitioners can facilitate their job
of rooting applications in ontological foundations if they use knowledge, practices,
and solutions from other disciplines. A clear understanding of what, when, and how
to borrow from other disciplines helps enormously.

References
1. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R. What are ontologies, and why do we
need them? IEEE Intelligent Systems 14, 1 (Jan./Feb. 1999), 20–26.

2. Devedzic, V. and Radovic, D. A framework for building intelligent manufacturing systems.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 29, 3
(Aug. 1999), 422–439.

3. Fowler, M. and Scott, K. UML Distilled: Applying the Standard Object Modelling Language.
Addison-Wesley, Reading, MA, 1997.

4. Fridman-Noy, N., Hafner, C.D. The state of the art in ontology design: a survey and com-
parative review. AI Magazine (Fall 1997), 53–74.

5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

6. Lenat, D.B. CYC: A large-scale investment in knowledge infrastructure. Commun. ACM
38, 11 (Nov. 1995), 33–38.

7. Lopez, M.F., Gomez-Perez, A., Sierra, J.P., Sierra, A.P. Building a chemical ontology using
methontology and the ontology design environment. IEEE Intelligent Systems 14, 1 (Jan./Feb.
1999), 37–46.

8. Mizoguchi, R. A step towards ontological engineering. Proceedings of The 12th National
Conference on AI of JSAI (June 1998), 24–31.

9. Shaw, M. Patterns for software architectures. In: J.Coplien, D. Schmidt (eds), Pattern Lan-
guages of Program Design. Addison-Wesley, Reading, MA (1995), 453–462.

10. Swartout,W. Tate, A. Ontologies, Guest Editors’ Introduction, IEEE Intelligent Systems
14, 1, Special Issue on Ontologies (Jan./Feb. 1999), 18–19.

11. Szyperski, C. Component Software: Beyond Object-Oriented Programming. ACM
Press/Addison-Wesley, New York, NY/Reading, MA, 1998.

12. Valente, A., Russ, T., MacGregor, R., Swartout, W. Building and (re)using an ontology of
air campaign planning, IEEE Intelligent Systems 14, 1 (Jan./Feb. 1999), 27–36.

144 April 2002/Vol. 45, No. 4ve COMMUNICATIONS OF THE ACM


