
JavaDON: an open-source expert system shell

Bojan Tomić, Jelena Jovanović *, Vladan Devedžić

FON, School of Business Administration, University of Belgrade, P.O. Box 52, Jove IliĆa 154, 11000 Belgrade, Serbia and Montenegro

Abstract

The paper describes JavaDON, an open-source expert systems shell based on the OBOA framework for developing intelligent systems. The

central idea of the JavaDON project was to make an easy-to-use and easy-to-extend tool for building practical expert systems. Since JavaDON is

rooted in a sound theoretical framework, it is well-suited for building even complex expert system applications, both stand-alone and Web-based

ones. JavaDON knowledge representation scheme supports using multimedia elements along with traditional techniques, such as rules and frames.

Another important feature of JavaDON is its capability of saving knowledge bases in XML format (in addition to the shell’s native format), thus

making them potentially easy to interoperate with other knowledge bases on the Internet. So far, JavaDON has been used to build several practical

expert systems, as well as a practical knowledge engineering tool to support both introductory and advanced university courses on expert systems.

The paper presents design details of JavaDON, explains its links with the underlying OBOA framework, and shows examples of using JavaDON

in expert system development. It also discusses some of the current efforts in extending JavaDON.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Expert systems; Development tools; Graphical user interface; Knowledge base interoperability
1. Introduction

There is a whole range of different expert system (ES)

development tools nowadays. They differ in the level of

flexibility they provide in building ES and in the range of

knowledge representation, reasoning, and other intelligent

techniques they support. They also differ in interoperability

level of knowledge bases and systems the users can develop

using those tools. At the lower end are tools like ReteCC, a

forward- and backward-chaining inference engine based on the

famous Rete pattern-matching algorithm for production

systems (Forgy, 1982), developed as a fully encapsulated

extension to CCC (Haley Enterprise Inc, 1996). Cafe Rete,

from the same manufacturer, is a Java class library that

seamlessly integrates a rules engine within Java applications,

servlets, EJBs, etc. At the upper end are integrated, rich ES

development environments, supporting and combining several

ES paradigms, as well as different mechanisms for representing

and handling uncertainty, providing explanations, and enabling

automatic knowledge-base construction and updating by

means of machine learning. Examples of such tools are
0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.09.085

* Corresponding author. Tel.: C381 11 3950853; fax: C381 11 461221.

E-mail addresses: bishop@drenik.net (B. Tomić), jeljov@fon.bg.ac.yu

(J. Jovanović), devedzic@fon.bg.ac.yu (V. Devedžić).
commercial products such as Exsys CORVID (http://www.

exsys.com) and Vanguard Software DecisionPro environment

(http://www.vanguardsw.com/). For more information about

ES building tools at different levels of sophistication and

integration see general ES literature (Durkin & Durkin, 1998),

(Eriksson, 1996), (Giarratano, 1998), as well as Internet

resources listed at AAAI site (http://www.aaai.org/aitopics/

html/expert.html) and at PC AI site (http://www.pcai.com/web/

ai_info/expert_systems.html).

At the GOOD OLD AI research group (http://goodoldai.org.

yu), based at the University of Belgrade, Serbia and

Montenegro, there are continuous, lively activities in develop-

ing and using ES tools. We have developed a framework for

building intelligent systems, called OBOA, and ES tools fit very

well in that framework. Moreover, we have developed several

practical expert systems and ES development tools, some of

which are already used in practice and have been made a

shareware (see Section 3 for details).

This paper presents the result of our most recent efforts—

JavaDON, an open-source, graphical, integrated ES building

tool. Although JavaDON is an academic project, the shell is

capable of building even complex ES and using them either as

desktop or Web applications. It still cannot rival higher-end

commercial products of the same kind, but is constantly

evolving and is already getting its users and supporters outside

our group.

The paper is organized as follows. Section 2 defines

precisely what we wanted JavaDON to provide, enable,
Expert Systems with Applications 31 (2006) 595–606
www.elsevier.com/locate/eswa

http://www.exsys.com
http://www.exsys.com
http://www.vanguardsw.com/
http://www.aaai.org/aitopics/html/expert.html
http://www.aaai.org/aitopics/html/expert.html
http://www.pcai.com/web/ai_info/expert_systems.html
http://www.pcai.com/web/ai_info/expert_systems.html
http://goodoldai.org.yu
http://goodoldai.org.yu
http://www.elsevier.com/locate/eswa


B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606596
and support. Section 3 briefly overviews the OBOA model and

some other current efforts in the GOOD OLD AI group related

to expert systems and ES shells. Sections 4–6 describe the

overall organization of JavaDON, its built-in knowledge

representation techniques and reasoning mechanisms, and

details of its design. Section 7 covers one of JavaDON’s

most important features—using eXtensible Markup Language

(XML) advantages to ensure for easy interoperability between

JavaDON-based systems and other XML applications. Section

8 discusses experiences with using JavaDON so far as well as

the tool’s advantages and disadvantages noticed. The conclud-

ing section summarizes the paper and indicates directions for

future development of JavaDON.
2. Problem statement

JavaDON project objectives include the following:

† the tool must be well engineered from the software

engineering perspective;

† it must be rooted in a sound conceptual and development

framework for building intelligent systems;

† it must support several knowledge representation and

reasoning paradigms (including representing uncertainty

and reasoning with it) and must enable their combination

within a single knowledge base;

† its graphical user interface (GUI) should make building an

ES easy for developers, with minimum requirements in

terms of knowledge of details of the tool’s internal

knowledge representation format;

† it should enable building and running both desktop and

Web-based ES applications;

† it should undergo a thorough testing through development

of a number of simple practical applications;

† it should facilitate interoperability between its native

knowledge bases and external Web applications;

† it should be open for further development, extensions, and

integration with external intelligent tools.

JavaDON is now being constantly tested, evaluated, and

maintained based on the users’ comments and suggestions. The

project is developing in a wider context of related R&D efforts

both within the GOOD OLD AI group and elsewhere.
3. Related work

JavaDON is developed after a series of other ES-related

efforts within the GOOD OLD AI group. The most notable one

related directly to ES building tools is JessGUI, a graphical

user interface built on top of the Java Expert System Shell, or

Jess (Friedman-Hill, 2003). Another notable ES-related

research result of our group is the OBOA framework that

provides a context for development of both ES and many other

kinds of intelligent systems.
3.1. JessGUI

Java Expert System Shell or Jess (Sandia National

Laboratories, 2003) is a popular, Java-based development tool

for ES. Jess is simple, yet powerful enough to allow for building

even industry-strength ES applications (Friedman-Hill, 2003).

Its major advantage is its capability to easily integrate with

external Java programs through its well-defined Java API. The

API allows for controlling Jess’ rule-based reasoning engine

from Java programs. Jess’ inference engine is mostly Rete-

based (Forgy, 1982) forward chaining, but backward chaining is

supported as well.

However, Jess lacks a GUI. A couple of members of the

GOOD OLD AI research group, have ventured into an R&D

project of designing and developing a GUI for Jess, called

JessGUI, suitable for all platforms that support Java Virtual

Machine. The central idea of the JessGUI project was to make

building, revising, updating, and testing Jess-based expert

systems easier, more flexible, and more user-friendly (Jova-

nović et al., 2004).

The major advantages of the GUI that JessGUI provides

over the user interface originally supported by Jess can be

summarized as follows:

† Working in graphical environment, like the one that

JessGUI offers (Fig. 1), is always preferred to using plain

text editors or typing commands in DOS prompt that Jess

offers as the only options.

† JessGUI offers an alternative to learning complex syntax of

the Jess (LISP-like) language. Users only need knowledge

of the basic concept of the language, to be able to specify

the content of the knowledge base they wish to create.

Another important advantage of JessGUI over Jess is related

to interoperability. More specifically, having created an

XMLSchema that defines the XML binding of Jess knowledge

base, we provided JessGUI with the capability of saving

knowledge bases in XML format (in addition to the original

Jess/CLIPS format). That way, we enabled other Web (or non-

Web) applications to access knowledge bases developed in

JessGUI. However, this format cannot be used by the Jess

interpreter, since it interprets only Jess/CLIPS code. Thus, we

needed a way to transform the JessGUI XML format into the

Jess/CLIPS code. Since XSLT is a natural solution for this kind

of problem, we developed an XSLT that transforms JessGUI

XML format into Jess/CLIPS format. Having developed

similar XSLTs, we provided interoperability with Semantic

Web tools. These XSLTs transform JessGUI’s XML-based

knowledge format into corresponding RDF(S) and OWL

models (Jovanović & Gašević).

JessGUI v. 1.0 is now complete, and is already used in

practical projects and as a teaching tool. More about this tool

can be found at: http://iis.fon.bg.ac.yu/JessGUI/index.htm.

Being still a research project, JessGUI naturally has some

limitations that are either in the process of elimination or are

planed to be resolved in the nearest future. The most difficult

one to solve is related to the import of existing Jess/CLIPS

http://iis.fon.bg.ac.yu/JessGUI/index.htm


Fig. 1. Screenshot of the panel that supports frames creation.

B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606 597
documents. JessGUI v.1.0 is not able to read, maintain, and

extend existing Jess projects. In order to support this feature it

is necessary to develop a parser for Jess/CLIPS format.

We also monitor contributions of other research groups to the

evolution of Jess itself. The most notable recent work in that

direction is presented by Eriksson (Eriksson, 2003). He has

developed a plug-in called JessTab (http://www.ida.liu.se/

wher/JessTab), which integrates Jess with Protégé-2000, a

popular ontology development and knowledge acquisition tool

developed at Stanford University (http://protege.stanford.edu/).

JessTab enables the Jess engine to run inside the Protégé-2000

framework and lets users build knowledge bases in Protégé-

2000 that work with Jess programs and rule bases.
3.2. The OBOA framework

The OBOA framework defines five levels of abstraction for

designing intelligent systems (Devedžić & Radović, 1999),

Fig. 2a. If necessary, it is also possible to define fine-grained

sublevels at each level of abstraction. Each level has associated
Fig. 2. The OBOA framework: (a) The l
concepts, operations, knowledge representation techniques,

inference methods, knowledge acquisition tools and tech-

niques, and development tools. They are all considered as

dimensions along which the levels can be analyzed and

instantiated, Fig. 2b. The concepts of the levels of abstraction

and dimensions have been derived starting from the well-

known idea of orthogonal software architecture from the field

of software engineering (Rajlich & Silva, 1996).

Semantics of the levels of abstractions is easy to understand.

In designing an intelligent system such as an ES, there are

primitives, which are used to compose units, which in turn are

parts of blocks. Blocks themselves are used to build self-

contained agents or systems, which can be further integrated

into more complex systems such as a distributed Web

application. For getting a feeling for how the OBOA levels

of abstraction correspond to some well-known concepts from

the ES domain, consider the following examples. Primitives

like plain text, logical expressions, attributes and numerical

values are used to compose units like rules, frames, and

different utility functions. These are then used as parts of
evels of abstraction; (b) dimensions.

http://www.ida.liu.se/~her/JessTab
http://www.ida.liu.se/~her/JessTab
http://protege.stanford.edu/


B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606598
certain building blocks that exist in every ES, e.g. blocks of

knowledge such as rule sets, and different inference strategies.

At the system level, we have self-contained systems or agents

like explanation planners, user modeling agents, and learning

actors, all composed using different building blocks. Finally, at

the integration level there are distributed AI systems,

distributed learning environments, and adaptive Web-based

applications (Devedžić, 2002).

It should be also noted that the borders between any two

adjacent levels are not strict; they are rather approximate and

‘fuzzy’. For example, a single ES can be put at the system

level, as a self-contained system. However, there are equally

valid arguments for putting it at the integration level if it is

based on the blackboard paradigm, since it can integrate

various knowledge sources. Each knowledge source in turn can

be based on a different paradigm (e.g. fuzzy system, neural

network, and the like) and can be developed by different tools

and made to interact at a higher level.

Finally, starting from this basic framework it is easy to make

further specializations and ‘populate the matrix’ at Fig. 2b by

different items specific for a certain class of intelligent systems.

For example, FuzzyOBOA framework is a specialization

developed to facilitate building fuzzy systems (Šendelj &

Devedžić, 2003), and GET-BITS is a specialization and

customization of the OBOA framework for development of

intelligent tutoring systems (Devedžić et al., 2000).

4. JavaDON requirements, architecture, and design

JavaDON has two types of users—KnowledgeEngineers

and EndUsers. A KnowledgeEngineer creates a new ES and

does all necessary modifications on existing ones. When

creating a new ES, he/she collaborates with domain experts and

enters the relevant domain knowledge into the knowledge base

(CreateNewProject use case). This process usually takes a

number of iterations. Modifying or extending an existing

knowledge base is another typical use case (OpenExistingPro-

ject). The other use cases shown in Fig. 3 are self-explanatory.

An EndUser begins using an existing JavaDON-based ES

by invoking the inference process on it, Fig. 4. He/she opens

the ES, enters the problem data, and interacts with the system.
Fig. 3. KnowledgeEngine
The ES shows to the EndUser the conclusions it reaches. The

interaction with the system may also include requests for

explaining the inference process. An advanced EndUser can

also select a preferred inference strategy (e.g. forward or

backward chaining for rule-based inferencing; default infer-

ence strategy is forward chaining).

JavaDON architecture (Fig. 5) is in accordance with the

OBOA model. Each element of the architecture belongs to one

of OBOA’s five levels of abstraction. In the subsequent text we

give a brief overview of the architecture’s elements grouped

into OBOA-defined levels of abstraction.

4.1. Primitives

† Domain— determines the basic type and range of a value.

Basic types are: string, integer, floating point and boolean.

† Attribute— every attribute has only one domain, and any

domain can be assigned to one or more attributes.

† Media— represents a media element (picture, movie, etc.).

† Action— defines a procedure which is to be performed on a

slot (slot is defined in the section ‘UNITS’).

† Relation— denotes a binary relation either between a slot and

some value between two slots (see section ‘UNITS’—

knowledge chunk).

† Formula— defines a calculation to be performed using

concrete values.

† Value— holds a concrete single value of any type together

with the certainty factor assigned to it.
4.2. Units

† Knowledge Element— all of the PRIMITIVES and the

UNITS (no matter the complexity) are considered to be

Knowledge Elements, since they all share common proper-

ties.

† Kowledge Chunk— a basic logical statement. It can be used

to relate a slot with a value or with another slot. It is used as

a building block for rules.

† Frame— similar to a class in object-oriented programming.

It has properties which are called slots (see slot). A frame
er-related use cases.



Fig. 4. EndUser-related use cases.

B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606 599
can inherit (‘IS A’ relation) and/or aggregate other frames

(‘HAS’ relation— see Subframe).

† Slot— a link between a frame and an attribute. A slot can contain

additional data, such as a question to be presented to the end user, a
Fig. 5. JavaDON architecture in acc
description, etc. Additionally, Media can be attached to a slot in

order to better describe the associated question, or its value.

† Subframe— is used when a frame aggregates another frame

(‘HAS’ relation).
ordance with the OBOA model.



B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606600
† Rule— a form of representing knowledge using IF/THEN

statements (clauses). Each rule has its prerequisites (one or more

IF clauses) which have to be satisfied in order for the THEN part to

be true. If a rule has multiple IF clauses, they can be internally

related with the ‘OR’ or the ‘AND’ logical operator. That means

that one (‘OR’) or all (‘AND’) of the IF clauses have to be

evaluated as true before THEN clauses can be proclaimed true.

† Clause— a link between a Knowledge Chunk and a Rule.
4.3. Blocks

Knowledge Elements— all Knowledge Elements can be

grouped. These groups contain only Knowledge Elements of

the same type (rules, frames...).
4.4. System

Knowledge Base— represents all knowledge of a certain

domain an ES contains. Knowledge Base consists of several

knowledge element groups (Knowledge Elements).
4.5. Integration

Currently, JavaDON does not support other ways of

integrating several knowledge bases except for merging them

in a single knowledge base. Integration with other intelligent
Fig. 6. A JavaDON screenshot: frame ‘Us
systems can be achieved through JavaDON-s API, databases,

or files it produces (see Section 6 for details).

From this point forward, a simple example will be used to

describe main JavaDON features. The example is a part of an

ES that provides support in choosing an appropriate type of

bicycle.
5. Knowledge representation in JavaDON

JavaDON implements all knowledge representation tech-

niques defined in the OBOA meta-model, namely: frames,

rules and O-A-V triplets. All three are used simultaneously,

and with some modification (i.e. a frame cannot contain

procedures as the OBOA specifies).

Considering our example ES, Figs. 6 and 7 illustrate how a

frame is represented in the JavaDON’s GUI.

Fig. 6 shows a screenshot of a frame with its contents. At the

left half of the picture, one can see a tree structure. The root of

the tree is node ‘Frames’ which represents all frames in the ES.

All subtrees that branch directly from the root represent frames.

In the presented screenshot, there is only one frame called

‘User’. In JavaDON, a frame can have slots, subframes and

parent frames. Each slot is represented as a subtree with the

root node ‘SLOTS’. The frame in our example (‘User’) has

only four slots, while two nodes (‘SUBFRAMES’ and

‘PARENT FRAMES’) have no child nodes. A slot is a

connection between a frame and an attribute, so this

information is shown in the node ‘ATTRIBUTE’. A slot can

have a description (‘DESCRIPTION’), one or more media files
er’ with its slot ‘bicycle_use’ shown.



Fig. 7. JavaDON screenshot: frame ‘User’ with its slot ‘Road_bike_ind’ shown.

Fig. 8. JavaDON screenshot: rule representation.

B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606 601



B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606602
(‘MEDIA’) and a question and answers (‘QUESTION’)

associated with it. This description and/or media files can be

shown to the end user to better explain the solution the ES has

produced. The question is used to gather information about the

value of the slot, if the value is to be supplied by the end user. It

can have two or more predefined answers (with the choice of

single or multiple selection), or it can be left to the user to

supply one or more answers. For example, slot ‘bicycle_use’

shown in the Fig. 6, has a question associated with it.

Accordingly, when ES needs information about the way the

end user is going to use his/her bicycle, it will ask him/her “For

which purpose are you going to use the bicycle?” and present a

list of four answers to choose from (with multiple selection

option): “As means of transport”, “For fitness”, “For leisure

cycling”, “For racing”. Media files can be presented to the end

user together with the question, in order to describe it better.

On the right side of the screen, the selected frame and its slots

are shown using list boxes, text boxes, etc.

Fig. 7 shows the screenshot of the same frame, but with

different slot selected (“Road_bike_ind”). Since its value is

determined by the ES (because it is a goal fact) it has no

question associated with it. Instead, it has a media file (picture

of a bicycle on the right side of the screenshot) and a

description associated with it.

In JavaDON, a rule consists of four elements: type,

importance, IF and THEN clauses (Fig. 8). The type of a

rule determines whether the rule’s IF clauses are related

with each other using the logical “and” or the logical “or”

operation. Importance determines which rule will be

executed in case there are more rules that can be executed

(more on reasoning in the next chapter). The IF and THEN

clauses are the meeting point between frames and rules.

Each clause uses one or more frame slots in order to build a

logic expression. Let us look at the rule “UTILITY&MTB”.

The rule states that if the “User”-s slot “bicycle_use” has

the value of “As means of transport” (IF clause), then slots

“MTB_ind” and “Utility_ind” will get the value “true”

assigned to them (THEN clauses). That means that if the

end user wishes to use the bicycle as means of transport,

that the optimal solution for him/her is either the ‘utility

bicycle’ or the ‘mountain bicycle’.

Actions can only be performed through rules. Rule “INIT”

is an example of that. Since it has no IF clauses, it can be

executed at the moment of starting the ES. Furthermore, since

it has the highest possible level of importance (Giarratano,

1998), it surely will be executed first. That means that its

THEN clause will be executed when the ES starts, prompting

the end user to answer the question associated with slot

“bicycle_use” from the frame “User”—”For which purpose are

you going to use the bicycle?”.
Fig. 9. Rules in the example ES (part of a JavaDON screenshot).
6. Reasoning in JavaDON

All of the reasoning in JavaDON is done by using the

forward chaining inference technique. Conflict resolving is

based on two techniques: ‘highest priority rule’ and ‘rule can
be fired only once’. Currently we are working on the

implementation of the backward chaining technique.

We explain the process of inferencing in JavaDON through

our example ES (all of the rules it consists of are shown in

Fig. 9). Only the rules relevant for the example are fully

expanded in the tree view.

When the ES starts, it initializes the inference process. In

each round of the process, a set of relevant rules is created. This

set consists of all the rules that have their IF clauses satisfied

and have not yet been fired. Then, only one rule is chosen from

the set and fired (its THEN premises are added to the working

memory), which concludes the round. This cycle continues

until the set of relevant rules is empty, or the user-defined

‘stop’ action is reached. In case the set consists of more rules,

which is very probable by the way, the rule with the highest

priority is chosen to be fired (‘highest priority rule’ technique).

Also, a rule can be fired only once during the whole inference

cycle (‘rule can be fired only once’ technique).

Correlating with our example, we can see that rule “INIT” is

the first to get fired when the example ES starts. It is the only

rule with IF part satisfied (it has no premises), and therefore the

only one in the set of relevant rules. That means that action in

its then part (“ask_question(User:bicycle_use)”) will be

executed. The screen presented to the end user is shown in

Fig. 10.



Fig. 10. Question presented to the end user in the example ES (JavaDON screenshot).

B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606 603
Let’s say that the end user wishes to use the bicycle only for

racing. He/she checks the appropriate answer and presses the

button ‘NextOO’, and a new round of the inference cycle

begins. The set of relevant rules has only one element—rule

‘Road&MTB’ (Fig. 9). When this rule is fired, its THEN

clauses are put in the working memory. Practically, this means

that the indicators representing the ‘road bike’ and the

‘mountain bike’ are set to true (slots “Road_bike_ind” and

“MTB_ind” from the frame “User”), thus appointing these two

types of bicycles as optimal for the end user. In the next two

rounds, “RESULT2” and “RESULT3” rules are fired,

executing actions that present the values of the aforementioned

slots, together with the associated media files, to the end user

(Fig. 11). After this, the newly formed set of relevant rules is

empty which means that the inference process ends.
7. Interoperability issues

The first version of JavaDON supported storage of

developed knowledge bases in XML format compliant to the

predefined XML Schema. Furthermore, procedural knowledge,

represented in the form of rules, could have been saved in Rule

Markup Language (RuleML).1 A set of XSLTs was also

implemented in order to enable transformation of JavaDON’s

native XML format into JessGUI, RDF(S) and OWL XML

formats (Jovanović & Gašević). However, since this old

version of the tool implemented only a small part of
1 RuleML is an ongoing effort of The Rule Markup Initiative (http://www.

dfki.uni-kl.de/ruleml/) to define a shared language, that would permit both

forward (bottom-up) and backward (top-down) rules in XML for deduction,

rewriting, and further inferential-transformational tasks (Boley, 2001), (Lee

and Sohn, 2003).
the features covered by the new version, the practical use of

the existing XML Schema as well as developed XSLTs was

very limited.

Two members of our research team (Dražen Krsmanović

and Nebojša Antić) worked on JavaDON’s support for XML

serialization. As the result of their efforts, the current version of

JavaDON is equipped with:

† An XML Schema covering all features of the OBOA model;

† XSLTs that enable bidirectional conversions between

JavaDON’s native XML format and RuleML format, as

well as between JavaDON’s and JessGUI’s native XML

formats.

A part of the developed XML Schema is shown in the

Fig. 12. The Fig. presents the Knowledge Element unit (see

Section 4) and exposes details of the structure of one of the

Knowledge Element types (Frame type). Currently, efforts are

made to implement RDF and OWL compatibility.

Furthermore, it is possible to use JavaDON as a part of any

Java-based application, through its API. The API consists of

standard Java methods that can be called in order to build or

execute an ES.
8. Applications and discussion

In this section we give an overview of ES that have been

created using JavaDON Shell. These ES have been developed

by undergraduate students, members of our research group, as

part of their final thesis.

Bicycle expert system. This ES helps a potential buyer to

determine which type of bicycle he/she should buy. The

solutions it generates are determined by the way the buyer is

http://www.dfki.uni-kl.de/ruleml/
http://www.dfki.uni-kl.de/ruleml/


Fig. 11. Conclusions represented to the end user by the example ES.

B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606604
going to use the bicycle. Part of this ES is used in the previous

sections of the paper to explain JavaDON features.

Travel GuidES was made by Vera Vasiljevic. It is an ES that

provides assistance in choosing an appropriate location and

accommodation for a holiday. It consists of several indepen-

dent ES specialized in certain types of vacation—summer,

winter, etc. Since the ES is supposed to run on the web, an

applet was made to provide interface to end users (Fig. 13).

Lora ES was made by Marija Suljamčević. It simplifies

decision making regarding the best suited hairstyle for a user.

The input data are face and hair features such as: face shape,

hair color, hair thickness, etc.

JavaDON has already proved as a practical knowledge

engineering tool in both introductory and advanced university

courses on expert systems. During this spring semester, we

used JavaDON as a teaching/learning tool in courses such as

Expert Systems, Intelligent Information Systems and the like.
Fig. 12. A part of JavaDON XML Sc
Our intention was to provide students with a powerful, yet

simple to use tool that would help them understand the basics

of knowledge representation and reasoning techniques.

Students initially used it to develop simple ES in the labs,

and later to do more advanced projects. We have already

conducted an informal evaluation of JavaDON with the

students. They were asked to give their view of the usefulness

of JavaDON tool for acquiring practical knowledge on ES

development. Along with positive feelings about JavaDON, the

students have also provided critical opinions that were

extremely useful for further improving JavaDON. Students

were also asked to compare JavaDON tool with JessGUI. The

majority of students preferred JavaDON over JessGUI,

stressing that it is more comfortable to work with. As we see

it, the primary reason for such students’ attitude should be

traced to the underlying knowledge models of these tools. As

we explained, JavaDON is built on top of an object-oriented
hema: Knowledge Element unit.



Fig. 13. Travel GuidES screenshot.

B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606 605
(OO) knowledge base model and our students are taught to

think in OO terms from the first year of their studies. Therefore,

it was expected that they will more easily accept a tool

compliant with their mindset, than the one built on top of an

unfamiliar and rather complex knowledge-base model. The

students were additionally asked to compare JavaDON with

KAPPA-PC ES shell (http://www.intellicorp.com/kappa-pc/)

that is also built on top of an OO model but is a commercial

product and hence more complex and powerful. Students were

almost unanimous in their opinions: JavaDON is better in the

early learning phase, when fundamentals of ES development

techniques should be acquired. However, KAPPA-PC was

perceived as a better solution for developing more complex ES.

Again, this feedback was exactly in accordance with our

expectations.

The new version of JavaDON enables users to build complex

ESs without knowledge of any specific programming language.

It is simple and intuitive. The tool enables building and running

both desktop and Web-based ES applications: desktop

applications are run through JavaDON’s ES launcher, whereas

an applet is available for the web-based ones. JavaDON is

developed using the three-tier architecture and design patterns,

so it can be easily maintained and extended. Being developed in

Java programming language, JavaDON can be easily integrated

with external intelligent tools through its Java API.

JavaDON is rooted in OBOA framework—a sound

conceptual framework for building intelligent systems. It

supports several knowledge representation techniques (frames,

rules and OAV triplets) and uses certainty factors for
representing uncertainty and reasoning with it. Furthermore,

an XMLSchema defining XML binding of JavaDON native

knowledge bases has been developed, hence improving

JavaDON’s interoperability with other intelligent tools. A

pair of XSLTs has already been built enabling interoperability

with JessGUI. Furthermore, we are currently developing an

additional set of XSLTs that will make JavaDON interoperable

with Semantic Web tools (i.e. tools based on RDF(S) and OWL

languages). As stated at the beginning of this section, the tool

has already undergone a thorough testing through development

of a number of simple practical applications.

Still, a few JavaDON features were noted as impractical,

and have to be improved. First, paths to the media files that ES

uses are saved as directory paths. Instead, they should be in

form of classpaths for higher portability level. Next, certainty

factors must be included whenever the end user is entering

data. This proved to be unnecessary in some cases, so it should

be made optional. Finally, when the end user is entering

problem data (as answers), he/she can only move forward

through the questions or restart the ES. This is especially

impractical when the ES contains a lot of questions, or when

the end user changes his/her mind about some of the given

answers. In order to prevent this problem from occurring, a

‘truth maintenance’ system must be implemented.
9. Conclusions

The experience we had with using JavaDON in practice so

far allows us to summarize its major advantages as follows:

http://www.intellicorp.com/kappa-pc/


B. Tomić et al. / Expert Systems with Applications 31 (2006) 595–606606
† the tool is rooted in the OBOA framework, which provides

both a stable theoretical foundation and a firm backbone for

future extensions;

† due to its partial support for multimedia knowledge

representation, the shell enables developing ES with rich

graphical interface, although it does not integrate a separate

user-interface development tool;

the structure of the created knowledge base is clear and easy

to browse;

† JavaDON facilitates introducing the process of building ES

to inexperienced users, due to its highly intuitive graphical

user interface; it allows the users to specify the content of

the knowledge base they wish to create without the need to

cover a specific knowledge representation language first;

† it is an open-source integrated tool, and is easy to extend

with new knowledge representation and inference tech-

niques;

† its capability of creating knowledge bases in the XML

format increases its interoperability with other intelligent

systems and tools;

† expert systems developed with JavaDON can be either

desktop or Web applications;

† JavaDON supports validation of some of the knowledge-

base elements immediately after their creation, thus

preventing run-time errors.

JavaDON is currently used in developing both simple and

complex ES within our group, as well as a teaching and

learning tool in undergraduate and graduate courses on ES at

our university. Its current version is made a shareware (http://

iis.fon.bg.ac.yu/DodatniMaterijali/JavaDON.zip), hoping that

a large population of ES developers will contribute to its

widespread use.

The next version of JavaDON will have a slightly modified

user interface, in order to accommodate the comments and

feedback we received from the users so far. Further

improvements will include better support for using certainty

factors and other techniques for representing uncertainty in

rules and reasoning with uncertain data, as well as support for
importing and extending existing knowledge bases developed

with other tools.
References

Boley, H. (2001). The rule markup language: RDF-XML data model, XML

schema hierarchy, and XSL transformations. Invited talk, INAP2001,

Tokyo, October 2001. Available at http://www.dfki.uni-kl.de/ruleml/, last

visited September 26th, 2003.

Devedžić, V. (2002). Understanding ontological engineering. Communications

of the ACM, 45(4), 136–144.

Devedžić, V., & Radović, D. (1999). A framework for building intelligent

manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C—Applications and Reviews, 29(3), 402–419.

Devedžić, V., Jerinić, L., & Radović, D. (2000). The GET-BITS model of

intelligent tutoring systems. Journal of Interactive Learning Research

(JILR), 11(3/4), 411–434 (Special issue on intelligent systems/tools in

training and lifelong learning).

Durkin, J., & Durkin, J. (1998). Expert systems: Design and development. New

York: Prentice Hall.

Eriksson, H. (1996). Expert systems as knowledge servers. IEEE Expert, 12(2),

14–19.

Eriksson, H. (2003). Using JessTab to integrate Protégé and Jess. IEEE

Intelligent Systems, 18(2), 43–50.

Forgy, C. (1982). Rete: A fast algorithm for the many pattern/many object

pattern match problem. Artificial Intelligence, 19, 17–37.

Friedman-Hill, E. J. (2003). Jess in action: Java rule-based systems.

Stockholm: Manning.

Giarratano, J. C. (1998). Expert systems: Principles and programming (3rd ed.).

London: Brooks/Cole.

Haley Enterprise Inc. (1996). Reasoning about ReteCC. White paper.

Available at http://www.haley.com/, last visited May 16th, 2005.

Jovanović, J., & Gašević, D. (forthcoming). XML/XSLT-based knowledge

sharing. Expert Systems with Applications, 29(3).

Jovanović, J., Gašević, D., & Devedžić, V. (2004). A GUI for Jess. Expert

Systems with Applications, 26(4), 625–637.

Lee, J. K., & Sohn, M. M. (2003). The extensible rule markup language.

Communications of the ACM, 46(5), 59–64.

Rajlich, V., & Silva, J. H. (1996). Evolution and reuse of orthogonal

architecture. IEEE Transactions on Software Engineering, 22(2), 153–157.

Sandia National Laboratories. (2003). Jess: The rule engine for the JavaTM

platform. Available at http://herzberg.ca.sandia.gov/jess/, last visited

September 26th, 2003.

Šendelj, R., & Devedžić, V. (2003). Fuzzy systems based on component

software. Fuzzy Sets and Systems, 141(3), 487–504.

http://iis.fon.bg.ac.yu/DodatniMaterijali/JavaDON.zip
http://iis.fon.bg.ac.yu/DodatniMaterijali/JavaDON.zip
http://www.dfki.uni-kl.de/ruleml/
http://www.haley.com/
http://herzberg.ca.sandia.gov/jess/

	JavaDON: an open-source expert system shell
	Introduction
	Problem statement
	Related work
	JessGUI
	The OBOA framework

	JavaDON requirements, architecture, and design
	Primitives
	Units
	Blocks
	System
	Integration

	Knowledge representation in JavaDON
	Reasoning in JavaDON
	Interoperability issues
	Applications and discussion
	Conclusions
	References


