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Abstract

The paper describes JessGUI, a graphical user interface developed on top of the Jess expert system shell. The central idea of the JessGUI

project was to make building, revising, updating, and testing Jess-based expert systems easier, more flexible, and more user friendly. There

are many other expert system building tools providing a rich and comfortable integrated development environment to expert system builders.

However, they are all either commercial or proprietary products. Jess and JessGUI are open-source freeware, and yet they are well suited for

building even complex expert system applications, both stand-alone and Web-based ones. An important feature of JessGUI is its capability of

saving knowledge bases in XML format (in addition to the original Jess format), thus making them potentially easy to interoperate with other

knowledge bases on the Internet. Jess and JessGUI are also used as practical knowledge engineering tools to support both introductory and

advanced university courses on expert systems. The paper presents design details of JessGUI, explains its links with the underlying Jess

knowledge representation and reasoning tools, and shows examples of using JessGUI in expert system development. It also discusses some of

the current efforts in extending Jess/JessGUI in order to provide intelligent features originally not supported in Jess.

q 2003 Published by Elsevier Ltd.
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1. Introduction

There is an entire hierarchy of expert system (ES)

development tools in terms of the level of flexibility they

provide in building ES and the range of knowledge

representation and reasoning techniques they support.

Simple ones include special-purpose programming

languages for ES development that facilitate knowledge

representation and reasoning, as well as extensions of

general-purpose programming languages (such as C and

Cþþ ) in order to provide language constructs and library

functions, classes and methods to support building ES. For

example, Hamada et al. (1995) have developed a number of

Cþþ classes and methods to support representing rules,

working-memory elements, and other knowledge elements,

as well as reasoning techniques. These facilitate ES

development and enable ‘direct coding’, i.e. inserting

Cþþ statements into production rules. Another example

is Reteþþ , a forward and backward chaining inference

engine based on the famous Rete pattern-matching

algorithm for production systems (Forgy, 1982), developed

as a fully encapsulated extension to Cþþ (Haley

Enterprise, 1996). Cafe Rete, from the same manufacturer,

is a Java class library that seamlessly integrates a rules

engine within Java applications, servlets, EJBs, etc.

In the middle part of the hierarchy are specific AI

programming languages and tools, such as Prolog, LOOM,

and Parka. Prolog interpreter has a built in backward

chaining inference engine that processes Prolog rules and

enables automatic backtracking, hence ES can be developed

in Prolog. LOOM is a language and an environment for

constructing ES and other intelligent applications, with

built-in techniques for representing knowledge as defi-

nitions, rules, and facts, as well as with a built-in Prolog-

technology deductive reasoning engine (Yen, Juang, &

MacGregor, 1991). Parka and Parka-DB are frame-based AI

languages/tools that enable scaling knowledge bases up to

extremely large-size applications, and use DBMS technol-

ogies to support inferencing and data management (Hendler,

Stoffel, Taylor, Rager, & Kettler, 1997).

The upper parts of the hierarchy are occupied by

integrated, rich ES development environments, supporting

and combining several ES paradigms, as well as different

mechanisms for representing and handling uncertainty,
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providing explanations, and enabling automatic knowledge-

base construction and updating by means of machine

learning. Examples of such tools are commercial products,

such as Exsys CORVID (http://www.exsys.com) and

Vanguard Software DecisionPro environment (http://www.

vanguardsw.com/). For more information about ES building

tools at different levels of sophistication and integration, see

general ES literature (Durkin & Durkin, 1998; Giarratano,

1998), as well as Internet resources listed at AAAI site

(http://www.aaai.org/aitopics/html/expert.html) and at PC

AI site (http://www.pcai.com/web/ai_info/expert_systems.

html).

In recent years, Java Expert System Shell, or Jess

(Friedman-Hill, 2002; Sandia, 2003) has become a popular

development tool for ES. Jess is essentially a reimplementa-

tion of a subset of the earlier CLIPS shell (CLIPS, 2003) in

Java. Its reasoning is based on a list of known facts and a set

of rules that try to match on these facts in its fact base. Rule-

based reasoning of Jess inference engine is mostly Rete-

based forward chaining, but backward chaining is supported

as well.

Jess is a simple, yet powerful enough tool to allow for

building a number of industry-strength ES applications

(Friedman-Hill, 2002). Its major advantage is its capability

to easily integrate with other Java programs through its

well-defined API for controlling the reasoning engine from

Java (Eriksson, 2003). Java programs can send expressions

to the Jess inference engine for evaluation, and it is easy to

extend Jess with new functions in Java because it is an open-

source freeware. In addition, Jess implements some

additional functionality not provided by CLIPS.

However, Jess lacks a GUI. A couple of members of the

GOOD OLD AI research group (http://goodoldai.org.yu),

based at the University of Belgrade, Serbia and Montenegro,

have ventured into an R&D project of designing and

developing a GUI for Jess, called JessGUI, suitable for all

platforms that support Java Virtual Machine. JessGUI v. 1.0

is now complete, and is already used in practical projects

and as a teaching tool. This paper describes design and

implementation of JessGUI v. 1.0 and experiences so far

with using it along with Jess in practice.

The paper is organized as follows. Section 2 defines

precisely what we wanted JessGUI to provide, enable, and

support. Section 3 briefly overviews some other current

efforts related to ES and ES shells GUI, and more

specifically to Jess and its applications. Sections 4 and 5

describe the overall organization of JessGUI, its communi-

cation with Jess’ built-in knowledge representation tech-

niques and reasoning mechanisms, and details of its design.

Section 6 covers one of JessGUI’s most important features,

using eXtensible Markup Language (XML) advantages to

ensure for easy interoperability between Jess-based systems

and other XML applications. Section 7 discusses experi-

ences with using Jess/JessGUI so far and advantages and

disadvantages noticed. Section 8 summarizes the paper and

indicates directions for future development of JessGUI.

2. Problem statement

JessGUI project objectives include the following:

† the GUI should make Jess knowledge base building easy for

developers, with minimum requirements in terms of know-

ledge of details of Jess knowledge representation format;

† from the ES developers’ perspective, the GUI should look

as an integral part of the shell (i.e. it is the Jess/JessGUI

combination that the ES builders normally use as the

development environment);

† it should be easy to integrate with Jess’ built-in knowledge

representation and reasoning tools;

† it should enable building and running both stand-alone

and Web-based ES applications;

† it should undergo a thorough testing through development

of a number of simple practical applications;

† it should facilitate interoperability between Jess knowl-

edge bases and external Web applications;

† it should be open for further development, extensions,

and integration with external intelligent tools.

JessGUI is now being constantly tested, evaluated, and

maintained based on the users’ comments and suggestions.

The project is developing in a wider context of related R&D

efforts both within the GOOD OLD AI group and elsewhere.

3. Related work

3.1. Web-based expert systems

One important line of ES research that we follow in

developing JessGUI is related to Web-based ES. To deploy

a Web-enabled ES, there are a number of architectural

approaches from which we may want to start. The most

common is the HTML-CGI architecture: The user interacts

with HTML entry forms in a Web browser; information

entered by the user is sent to the Web server which forwards

it to the CGI (Common Gateway Interface) program which

then replies with new HTML pages (Alpert, Singley, &

Fairweather, 2000; Eriksson, 1996). All the expert function-

ality resides on the server side (in the CGI program), but the

user interacts with it using a standard Web browser.

Another option might be distributed client–server

architecture—a downloadable Java applet contains the

user interaction portion of the Expert system, and commu-

nicates directly with the server application using a socket

connection or other inter-program communication mechan-

ism—some of the expert behavior resides in the client, some

in the server (Eriksson, 1996; Potter et al., 2001).

3.2. Knowledge interchange and interoperability

The second line of research that we follow closely is

related to the efforts of making the knowledge represented
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on the Web interoperable and ready to be shared between

applications. One such effort is The Rule Markup Initiative

(http://www.dfki.uni-kl.de/ruleml/) whose mission is to

define a shared Rule Markup Language (RuleML), permit-

ting both forward (bottom-up) and backward (top-down)

rules in XML for deduction, rewriting, and further

inferential-transformational tasks (Boley, 2001). Another

important one is The eXtensible Rule Markup Language, or

XRML, that enables identification of implicit rules

embedded in Web pages, interchanging them with struc-

tured-format rule-based systems, and accessing them by

different applications (Lee & Sohn, 2003).

3.3. Extensions, upgrades, and applicability of Jess

We also monitor recent efforts related to integrating Jess

with other development environments, as well as contri-

butions of other research groups to the evolution of Jess

itself. The most notable recent work in that direction is

presented by Eriksson (2003). He has developed a plug-in

called JessTab (www.ida.liu.se/~her/JessTab), which inte-

grates Jess with Protégé-2000, a popular, modular ontology

development and knowledge acquisition tool developed at

Stanford university (http://protege.stanford.edu/). JessTab

enables a Jess engine to run inside the Protégé-2000

framework and lets users build knowledge bases in

Protégé-2000 that work with Jess programs and rule bases.

It takes advantage of the Jess API to map information in the

Protégé knowledge base to Jess facts and to extend Jess with

additional functions for communication with Protégé-2000

(Eriksson, 2003).

Program JessWin1 represents probably the first attempt to

introduce certain graphical elements in the Jess develop-

ment environment, thus making it more user-friendly.

However, its graphics, reduced to the use of windows, is

fairly modest and as such does not significantly enhance the

quality of interaction between the user and Jess. JessWin

users still need perfect knowledge of Jess syntax in order to

create valid ES. Another important contribution to Jess

evolution is FuzzyJess, an extension of Jess that enables

usage of fuzzy facts. It was developed through integration of

Jess and NRC FuzzyJ Toolkit,2 a set of Java(tm) classes that

provide the capability for handling fuzzy concepts and

reasoning. It is also worth noting that Jess’ capabilities were

further extended with JavaMailFunctions,3 new user

defined functions interfacing to Sun’s JavaMail 1.1 API.

In order to integrate two Java-supported technologies,

Jess and Java XML parser, Leff (2001) developed Jess User

Functions that load XML documents and convert the

Document Object Model (DOM) tree into a series of Jess

facts. A fact is created for each XML tag and each attribute

found in the document loaded. Then ordinary Jess rules can

be used to reason about the XML document loaded. Also

rules themselves can be expressed in XML. Detailed

examples using these XML/Jess extensions can be reached

at http://ecitizen.mit.edu/ecap3.html. Left’s approach is

useful because it demonstrates an integration of XML and

Jess, but it cannot be used for representing all Jess’

knowledge base features (e.g. relations between a template

and its instances, function definitions, etc.). The importance

of integrating Jess with XML is also discussed in the

experiences of other developers at http://herzberg.ca.sandia.

gov/jess/devlog.shtml. In this context, XML support means

to be able to convert easily from Jess scripts to an XML

representation and back. To implement this, again, what is

needed is a fast, flexible parser, with excellent error

reporting and a public API.

3.4. Research context of JessGUI development

The idea of developing JessGUI emerged along with

other important research activities and results achieved by

the GOOD OLD AI group—many of the group’s activities

are closely related to ES technology. Devedžić and Radović

(1999) have proposed a multi-layered framework for

building intelligent systems, called OBOA, which incorpor-

ates a number of ES techniques. More recently, a number of

fuzzy logic tools have been developed in accordance with

the OBOA framework; they make the basis of the more

specific Fuzzy OBOA framework (Šendelj, 2003). A fuzzy

ES development tool called FES is developed to fit Fuzzy

OBOA and used to implement a couple of fuzzy ES in a

medical domain. Jess has been explicitly used in Code

Tutor, a Web-based intelligent tutoring system for fast

students’ briefing in the area of radio-communication

(Šimić & Devedžić, 2003). A novel design of forward-

chaining rule-based inference engine has been implemented

as an interoperable software component (Čakić & Devedžić,

1999), and a Web-based ES for diagnosis of car mal-

functioning was developed (Andrić, Devedžić, & Andrejić,

2003)).

4. Proposed solution

The main idea of the JessGUI project was to develop a

GUI for Jess ES Shell which would make this ES

development environment more user friendly and much

easier to work with, hence enlarging the number of its

potential users.

Important advantages of the new user interface (UI) in

comparison with the existing one are as follows:

† Interaction and dialogs using familiar graphical elements

instead of plain command prompt—JessGUI enables

1 Developed by William E. Wheeler, it can be freely downloaded from

the Jess official web site http://herzberg.ca.sandia.gov/jess under the link

‘Users’ contributions’.
2 The toolkit was developed at the National Research Council of

Canada’s Institute for Information Technology.
3 Written by Thomas Barnekow, they can be downloaded from http://

herzberg.ca.sandia.gov/jess/user.shtml.

ESWA 1175—26/12/2003—14:41—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 3

ARTICLE IN PRESS

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

http://www.dfki.uni-kl.de/ruleml/
http://www.ida.liu.se/~her/JessTab
http://protege.stanford.edu/
http://ecitizen.mit.edu/ecap3.html
http://herzberg.ca.sandia.gov/jess/devlog.shtml
http://herzberg.ca.sandia.gov/jess/devlog.shtml
http://herzberg.ca.sandia.gov/jess
http://herzberg.ca.sandia.gov/jess/user.shtml
http://herzberg.ca.sandia.gov/jess/user.shtml


UNCORRECTED P
ROOFusers to work with windows, buttons, text fields and other

graphical objects which are essential parts of UI of

modern applications. It is much more convenient and less

time-consuming than typing complicated constructs at

the command prompt.

† Users need only the knowledge of the basic Jess concepts

instead of the complete syntax of the CLIPS language:

JessGUI offers an alternative to learning complex

structures that are part of CLIPS, which Jess has inherited

from its predecessor.

JessGUI design was based on the layout of Protégé-

2000s GUI. Just like the UI of Protégé-2000, JessGUI has a

few panels, one for each of Jess’ concepts.

4.1. Use cases

The main use cases (UC) of the JessGUI application,

implementing the options of the main menu, are:

† Create new ES Project

† Open existing ES Project

† Save ES Project

† Run (Start Jess Engine)

UC ‘Create New ES Project’ is a complex UC and can be

further decomposed into separate UCs each representing the

creation of one of the Jess’ concepts. This decomposition

reveals the following UCs:

† Add Module

† Add Global Variable

† Add User Function

† Add Rule

† Add Frame

† Add Facts

The first four UCs are rather simple (elementary) and not

particularly interesting. The last two UCs need further

clarification.

The ‘Add Frame’ UC (Fig. 1a) describes the creation of

the Jess concept called frame,4 that represents a template for

instantiating unordered facts (see Section 4.2 for more

details). Each frame is composed of one or more slots.5 This

UC includes the elementary UC ‘Add Slot’, and can be

extended by another two elementary UCs, ‘Edit Slot’ and

‘Delete Slot’.

‘Add Facts’ is the most complex UC. It is further

decomposed into separate UCs that describe the process of

instantiating ordered and unordered facts, both as single

facts or as groups of facts (i.e. through deffacts structure). Its

decomposition is presented in the use case diagram in

Fig. 1b.

4.2. Links between JessGUI and jess

JessGUI does not directly operate with Java API that Jess

provides for representing its main concepts (**Section 5.3).

Instead of using Jess’ classes for representing rules, frames

and other concepts, JessGUI introduces its own classes for

the purpose of representing these concepts.

Since the Jess inference engine can process a knowledge

base only if it is represented either with classes that Jess

provides for that purpose, or as a document in CLIPS format

(.clp file), it was essential to transform data stored in

instances of JessGUI classes to one of the formats just

mentioned. As an important early design decision was to

Fig. 1. Use-case diagrams representing complex UCs: (a) ‘Add Frame’ (b) ‘Add Facts’.

4 The original name of this concept in Jess terminology is ‘template’, but

in the JessGUI project the term ‘frame’ is used in order to achieve higher-

level generalization and conformance with a wider spectrum of AI

community developers.
5 The concept of frames and slots is similar to the concept of records and

their fields in standard programming languages.
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enable permanent storage of knowledge bases in XML

documents for the purpose of their easier reusability, the

painless solution of the above dilemma was to take

advantage of eXtensible Stylesheet Language Transform-

ations (XSLT, http://www.w3.org/TR/xslt) and transform

XML files into the corresponding CLIPS files familiar to the

Jess’ inference engine. Fig. 2 depicts this idea.

Jess enables building rule-based ES whose knowledge

base is composed of two important structures: facts and

rules. A fact is a construct that defines a piece of information

that is known to be true, whereas a rule is an if/then

statement that defines the set of facts that must be true (the if

part) before a set of actions (the then part) can be executed

(Friedman-Hill, 2003). In Jess, there are three kinds of facts:

ordered facts, i.e. facts without a predefined structure;

unordered facts, i.e. facts whose construction is based on

using frames or templates; definstance facts, i.e. facts that

are actually instances of user-defined Java classes. JessGUI

v.1.0 supports creating the first two types of facts.

From JessGUI, one can run both forward- and back-

ward-chaining inferences that Jess’ inference engine

provides. This is configurable—before choosing the

‘Run’ menu option, the user should set the desired

configuration of the inference engine in the ‘Options’

menu. Since JessGUI was conceptualized as an extensible

ES building tool, providing support for Jess’ native

inference methods presents just the first step in its

development. Application is open for further extensions

and its capabilities will be enhanced by adding support for

other inference methods, some of them developed by

members of the GOOD-OLD-AI group.

5. Design details

Classes created during the development of JessGUI can

be categorized into two main categories:

1. presentation layer classes, i.e. classes that implement

frames and dialogs of the JessGUI application;

2. middle layer classes, i.e. classes that implement the

application logic.

The classes corresponding to the third layer of the

classical concept of three-tier software architecture, i.e. the

classes that should support communication with persistent

data storage, were not implemented. Instead of storing data

in a database, JessGUI enables its users to store their

projects in the form of.xml or.clp files.

5.1. Presentation layer

Presentation layer classes are shown in Fig. 3. For the sake

of clarity, the diagram shows only the classes that implement

the most important panels and dialogs of the developed

graphical user interface. Analyzing the diagram, one can

notice that each Jess concept has its associated panel or

dialog and a class that implements that panel/dialog.

5.2. Application layer

Application-layer classes can be further divided into the

following two categories:

1. classes that represent Jess’ main concepts;

2. controllers and mediators.

5.2.1. Representing Jess concepts

JessGUI application does not use classes that Jess ES Shell

provides for representing its main concepts (rules, facts,

templates, etc.). Instead, at the level of the application logic,

there are classes that represent each of those concepts (one

class per concept). These classes, through their attributes and

methods, support storing all data and knowledge that the

knowledge-base developer provides. Decision not to work

with Jess’ classes was based on the following reasons:

† classes that Jess provides for representing some of its

concepts cannot be directly instantiated—only Jess parser

can create their instances while parsing the file that

contains ES code (file with.clp extension);

† achieving higher level of generalization and reusability—

the knowledge base created using JessGUI can be

processed by different inference engines other then the

one that Jess uses.

The class diagram shown in Fig. 4 depicts the structure

and interconnections of previously discussed JessGUI

classes that implement the basic Jess concepts. In order to

Fig. 2. The major link between JessGUI and Jess.
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Fig. 4. Classes that represent the main Jess concepts.

Fig. 3. Presentation layer classes.
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avoid clutter, the class diagram does not show the methods

for setting and getting attribute values. A quick study of

attribute lists of the classes shown on the diagram is enough

to confirm that these classes can capture all data necessary

for constructing the concepts they represent.

The class diagram shown in Fig. 5 represents the classes

that cooperate in implementing the complex use case ‘Add

Frame’. The classes ‘FrameControler’ and ‘Mediator’ are

responsible for providing low-level coupling between

presentation and application logic layers.

5.2.2. Controllers and mediators

A software pattern is named problem/solution pair that

can be applied in a new problem situation (Larman, 1997).

Patterns are general principles and solutions that are used in

software development.

General Responsibility Assignment Software Patterns, or

GRASP patterns, aim to resolve problems related to assign-

ing responsibilities to objects during software design. All

main GRASP patterns, namely ‘Expert’, ‘High Cohesion’,

‘Low Coupling’ and ‘Controller’, were used while designing

JessGUI. For example, JessGUI uses one controller class for

governing each implemented use case, as well as one class

that represents global controller that coordinates work of

other controller classes and manages main operations.

Design of JessGUI was based also on well-known design

patterns, or GoF patterns. They represent descriptions of

communicating objects and classes that are customized to

solve a general design problem in a particular context

(Gamma, Helm, Johnson, & Vlissides, 1995). For example,

JessGUI takes advantages of the ‘Mediator’ pattern that

introduces an object responsible for interaction between a set

of objects, thus promoting low-level coupling between them.

JessGUI’s classes ‘Mediator’, ‘FramesControler’ and ‘Facts-

Controler’ implement this pattern. Their interconnection can

be observed in Fig. 5.

5.3. Software organization and packages

Software classes developed as a part of JessGUI project

are logically organized into three main groups:

1. classes that implement panels and dialogs of the user

interface;

2. classes responsible for handling system events and

supporting work with XML files;

3. classes that represent the main concepts of the Jess ES

Shell.

This logical decomposition can be graphically rep-

resented using software packages. The package with classes

from the first group mentioned above is shown in Fig. 6.

5.4. Example screens of JessGUI

In order to illustrate interface design and look-and-feel of

JessGUI, Figs. 7a and 8 show panels for creating frames and

rules, respectively.

Fig. 7a shows a screenshot of JessGUI, while the panel

‘Frames’ is active. This panel enables users to define the

structure of frames that would later serve as templates for

creating unordered facts. The user has to enter a name for

the frame and optionally a description that should clarify the

purpose of the frame. Each frame contains one or more slots.

The user creates them by pressing the ‘Add’ button, thus

invoking a special-purpose dialog, shown in Fig. 7b, for

defining features for each slot. Each slot, after its features

have been specified, is represented in the table that occupies

the central part of the panel. The user has also an option to

derive a new frame from an existing one. In that case, the

new frame inherits all slots from its ‘parent’ frame and

Fig. 5. Classes that implement the ‘Add Frame’ use case.

Fig. 6. The package with presentation layer classes.
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the user should specify only the new slots.

Fig. 8 shows the panel ‘Rules’ for creating rules as the

principal knowledge elements of the Jess knowledge base.

As it can be noticed in the figure, this panel enables users to

specify the rule’s name, priority, whether it will have auto-

focus or not and optionally to provide its short description.

After making these specifications, the user should define

conditions (IF-part) and actions (THEN-part) of the rule.

After creating a rule, the user can check its validity before

saving it, by pressing the ‘Validate’ button that would be

a signal for the system to initiate parsing the rule and

producing a message, in the form of dialog box, to inform

the user of the results of the parsing process.

6. Interoperability issues

An important aspect of JessGUI is interoperability, i.e.

enabling other Web (or non-Web) applications to access and

use Jess knowledge base. Jess knowledge base is normally

represented in Jess/CLIPS format. However, for parsing

Fig. 7. (a) Panel for specifying frame’s properties. (b) Dialog for slot definition.

Fig. 8. Panel that supports rule creation.
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such documents one must develop his/her own parser, which

is difficult and time-consuming. It is more efficient to use

XML-based knowledge-base representation, because there

are many freeware XML parsers that can be used in a

number of applications. Furthermore, XML documents (i.e.

knowledge base) can be transformed to other XML or non-

XML documents using XSLT. Of course, XML is also

a fundamental technology for knowledge representation on

the Semantic Web.

We developed an XML format for Jess knowledge bases

using W3C’s XML Schema for defining XML document

grammar, and made it available to Jess knowledge-base

builders through JessGUI. This XML format can contain

and represent all Jess concepts (e.g. module, global variable,

etc.). Speaking in terms of XML Schema definition, for each

of these concepts we defined a proper complex type. We

used UML profile for modeling XML Schema (Carlson,

2001) in order to obtain a better readability as well as a

better documentation of the JessGUI’s XML format. Fig. 9

depicts a class diagram for the content model of the XML

format root element (i.e. knowledgeBase). This element can

contain an unbounded number of XML elements: module,

globalVar, deffact, fact, template, function, and rule. Each

of these elements represents a real Jess concept. In Fig. 9 we

show only a part of the XML Schema definition, while other

elements are also defined using a similar procedure.

Each JessGUI’s class is responsible for saving the state

of its objects’ attributes in XML format through its

dedicated a save method. Fig. 10 shows how this is

implemented in the Rule class. One can note that we do

not dynamically create a DOM tree, but we save XML

documents as a regular text file. This way we prevent

potential problems in the case we have a large knowledge

base (i.e. a large DOM tree). After executing the save

method from Fig. 10 for a real-application JessGUI rule, an

XML document is produced that looks as in Fig. 11.

Having XML-based format for JessGUI is a good feature

for interoperability with other knowledge-based systems,

but this format cannot be used by the Jess interpreter. The

Jess interpreter in its basic distribution interprets only

Jess/CLIPS code. Thus, we need a way to transform the

JessGUI XML format into the Jess/CLIPS code. XSLT is a

natural solution for this problem. We developed an XSLT

that transforms JessGUI XML format into Jess/CLIPS

format, and this XSLT is performed in JessGUI when one

wants to export a JessGUI knowledge base into Jess/CLIPS

format. A part of this XSLT (i.e. XSLT template) that

transforms JessGUI XML deffact into Jess/CLIPS deffact

statement looks as in Fig. 12.

Developing similar XSLTs we can support interoper-

ability with other Semantic Web tools. For example, if one

wants to import a Jess/JessGUI knowledge base into

Protégé-2000, then it is enough to develop an XSLT from

JessGUI format to RDF(S) format that can be imported in

Protégé-2000. Of course, in this example there is a

constraint that Protégé-2000 can import only templates

and unordered facts because RDF(S) is being used.

Importing a Jess knowledge base in Protégé-2000 can be

useful, because it is a way to produce an ontology

(Devedžić, 2002). Other limitations can occur in the case

of a knowledge base interchange with some other systems.

This is because other systems do not support all Jess

features. Currently, we make efforts towards achieving

interoperability between JessGUI and JavaDON (a tool for

Fig. 9. UML class diagram of the root element in the JessGUI XML format.
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developing intelligent systems developed by GOOD OLD

AI members and based on OBOA framework). Since

JavaDON also uses XML-based format for knowledge

base it is enough to develop an appropriate XSLT.

7. Practical experience with JessGUI

So far, we used JessGUI in practical developments in two

ways. First, in order to improve and stabilize JessGUI itself,

we re-developed the knowledge bases of some ES we

developed earlier, this time using Jess/JessGUI. An example

is Defector, an ES for diagnosing malfunctions on cars,

http://galeb.etf.bg.ac.yu/~aandreja/defektator/defektator.

htm (Andrić et al., 2003). Fig. 13 shows a screenshot from

Defector. Such re-developments were comparatively easy

since we started from working systems, but were also very

important for us in terms of noticing and correcting some

weaknesses of JessGUI from the developers’ perspective.

Second, we used Jess/JessGUI for developing new ES.

Two of them are a partner-matching ES (currently under

development and testing) and Travel Guide, a just

completed ES that recommends tourists destinations,

means of transportation, facilities, activities, and the like

Fig. 10. An example of JessGUI class and its method for saving in XML format.

Fig. 11. An example an XML document is produced by saving a JessGUI rule in XML format.
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(Fig. 14). Both systems are large-scale systems and involved

a number of developers. Their evaluations of JessGUI were

an invaluable feedback on JessGUI’s usability.

Jess/JessGUI is already in use in teaching ES courses

at three higher-education institutions. The students are

exercise simple ES development and understanding of

basic knowledge representation and reasoning techniques

using Jess/JessGUI in the labs, and also use it to do their

required projects. We have already conducted informal

evaluations of Jess/JessGUI with students. They were

asked to compare Jess’ native command-line UI to

JessGUI. Along with positive feelings about JessGUI and

stressing more comfortable work with that without

JessGUI, the students have also provided critical opinions

that were extremely useful for improving JessGUI. Being

a still evolving ES building tool, JessGUI naturally still

has drawbacks that are either in the process of

elimination or are planed to be resolved in the nearest

future.

The current version of the JessGUI program does provide

a certain level of help in order to simplify the process of

creating the knowledge base, but not full support. The

support that JessGUI provides are three dialogs that enable

users to browse through the list of Jess-intrinsic and user-

defined functions, Jess conditional elements and previously

defined global variables (if any), respectively. This is

probably the main drawback of JessGUI, since it imposes

the burden of learning CLIPS syntax on its users. The

problem stems from the fact that the members of the GOOD

OLD AI group, not having at their disposal the complete

Fig. 12. An example XSLT template of JessGUI’s format converter.

Fig. 13. A screenshot from the Defector ES.
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specification of the Jess language, were not able to create a

program that would automatically check the validity of each

of the knowledge base elements.

Another disadvantage of the JessGUI v.1.0 is its inability

to represent uncertainty and to reason with uncertain data.

Since Jess does not offer these functionalities and since the

first version of JessGUI was aimed to provide support only

for Jess’ native options, representing and reasoning with

uncertainty were not tackled until the second cycle of the

JessGUI development process has begun. It is expected that

the next version will be extended to overcome both this

problem and the one presented in the previous paragraph.

JessGUI v.1.0 cannot import existing Jess/CLIPS

documents. This limitation disables JessGUI to read,

maintain, and extend existing Jess projects using advantages

of JessGUI. In order to support this feature it is necessary to

develop a parser for Jess/CLIPS format, but this is more

difficult and time-consuming than XSLT developing. We

also plan extending JessGUI’s capabilities in the next

version with such a converter.

8. Conclusions

The major advantages of the GUI that JessGUI provides

over the UI originally supported by Jess ES Shell can be

summarized as follows:

† working in graphical environment, like the one that

JessGUI offers, is always preferred to using plain text

editors or typing commands in DOS prompt that Jess

offers as the only options;

† JessGUI facilitates the process of building Jess-based ES

by enabling the users who are not familiar with details of

the Jess’ syntax to specify the content of the knowledge

base they wish to create;

† the structure of the created knowledge base is much

clearer and easier to browse;

† JessGUI supports validation of some of the knowl-

edge-base elements immediately after their creation,

thus preventing run-time errors.

Jess/JessGUI is currently used in developing both simple

and complex ES within our group, as well as a teaching and

learning tool in undergraduate and graduate courses on ES

at our university. Its next version will be made a shareware,

hoping that a large population of ES developers will

contribute to its widespread use.

The next version of JessGUI, currently evolving from

JessGUI v.1.0 will eliminate the need for users to learn

details of Jess/CLIPS syntax. Further improvements will

include the capabilities of representing uncertainty in rules

and reasoning with uncertain data, as well as importing and

extending existing Jess/CLIPS projects through JessGUI.
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Dragan Gašević is a PhD candidate at FON, School of Business

Administration, University of Belgrade, Serbia and Montenegro, and a

senior lecturer of computer science at the Military Academy, Belgrade,

Serbia and Montenegro. He has received his BS degree in computer

science from the Military Academy, Belgrade (2000), and his MS

degree also in computer science from The School of Electrical

Engineering, University of Belgrade (2002). His research interests

include Petri nets, knowledge representation, ontologies, Semantic

Web, intelligent systems, XML and related standards and technologies,

and software engineering (MDA). So far, he has authored/co-authored

more than 30 research papers. He is a member of the GOOD OLD AI

research group, and a student member of the ACM.
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