
UNCORRECTED P
ROOF

A GUI for Jess

Jelena Jovanović, Dragan Gašević, Vladan Devedžić*

FON, School of Business Administration, University of Belgrade, P.O. Box 52, Jove Ilića 154, 11000 Belgrade, Yugoslavia

Received 2 October 2003; revised 2 October 2003; accepted 1 December 2003

Abstract

The paper describes JessGUI, a graphical user interface developed on top of the Jess expert system shell. The central idea of the JessGUI

project was to make building, revising, updating, and testing Jess-based expert systems easier, more flexible, and more user friendly. There

are many other expert system building tools providing a rich and comfortable integrated development environment to expert system builders.

However, they are all either commercial or proprietary products. Jess and JessGUI are open-source freeware, and yet they are well suited for

building even complex expert system applications, both stand-alone and Web-based ones. An important feature of JessGUI is its capability of

saving knowledge bases in XML format (in addition to the original Jess format), thus making them potentially easy to interoperate with other

knowledge bases on the Internet. Jess and JessGUI are also used as practical knowledge engineering tools to support both introductory and

advanced university courses on expert systems. The paper presents design details of JessGUI, explains its links with the underlying Jess

knowledge representation and reasoning tools, and shows examples of using JessGUI in expert system development. It also discusses some of

the current efforts in extending Jess/JessGUI in order to provide intelligent features originally not supported in Jess.

q 2003 Published by Elsevier Ltd.

Keywords: Expert systems; Development tools; Graphical user interface; Knowledge base interoperability

1. Introduction

There is an entire hierarchy of expert system (ES)

development tools in terms of the level of flexibility they

provide in building ES and the range of knowledge

representation and reasoning techniques they support.

Simple ones include special-purpose programming

languages for ES development that facilitate knowledge

representation and reasoning, as well as extensions of

general-purpose programming languages (such as C and

Cþþ) in order to provide language constructs and library

functions, classes and methods to support building ES. For

example, Hamada et al. (1995) have developed a number of

Cþþ classes and methods to support representing rules,

working-memory elements, and other knowledge elements,

as well as reasoning techniques. These facilitate ES

development and enable ‘direct coding’, i.e. inserting

Cþþ statements into production rules. Another example

is Reteþþ , a forward and backward chaining inference

engine based on the famous Rete pattern-matching

algorithm for production systems (Forgy, 1982), developed

as a fully encapsulated extension to Cþþ (Haley

Enterprise, 1996). Cafe Rete, from the same manufacturer,

is a Java class library that seamlessly integrates a rules

engine within Java applications, servlets, EJBs, etc.

In the middle part of the hierarchy are specific AI

programming languages and tools, such as Prolog, LOOM,

and Parka. Prolog interpreter has a built in backward

chaining inference engine that processes Prolog rules and

enables automatic backtracking, hence ES can be developed

in Prolog. LOOM is a language and an environment for

constructing ES and other intelligent applications, with

built-in techniques for representing knowledge as defi-

nitions, rules, and facts, as well as with a built-in Prolog-

technology deductive reasoning engine (Yen, Juang, &

MacGregor, 1991). Parka and Parka-DB are frame-based AI

languages/tools that enable scaling knowledge bases up to

extremely large-size applications, and use DBMS technol-

ogies to support inferencing and data management (Hendler,

Stoffel, Taylor, Rager, & Kettler, 1997).

The upper parts of the hierarchy are occupied by

integrated, rich ES development environments, supporting

and combining several ES paradigms, as well as different

mechanisms for representing and handling uncertainty,

0957-4174/$ - see front matter q 2003 Published by Elsevier Ltd.

doi:10.1016/j.eswa.2003.12.012

Expert Systems with Applications xx (0000) xxx–xxx

www.elsevier.com/locate/eswa

* Corresponding author. Tel.: þ381-11-3950853; fax: þ381-11-461221.

E-mail addresses: devedzic@galeb.etf.bg.ac.yu (V. Devedžić); jeljov@

yubc.net (J. Jovanović); gasevic@yahoo.com (D. Gašević).

ESWA 1175—26/12/2003—14:41—SATHYA—90583— MODEL 5

ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

http://www.elsevier.com/locate/eswa

UNCORRECTED P
ROOF

providing explanations, and enabling automatic knowledge-

base construction and updating by means of machine

learning. Examples of such tools are commercial products,

such as Exsys CORVID (http://www.exsys.com) and

Vanguard Software DecisionPro environment (http://www.

vanguardsw.com/). For more information about ES building

tools at different levels of sophistication and integration, see

general ES literature (Durkin & Durkin, 1998; Giarratano,

1998), as well as Internet resources listed at AAAI site

(http://www.aaai.org/aitopics/html/expert.html) and at PC

AI site (http://www.pcai.com/web/ai_info/expert_systems.

html).

In recent years, Java Expert System Shell, or Jess

(Friedman-Hill, 2002; Sandia, 2003) has become a popular

development tool for ES. Jess is essentially a reimplementa-

tion of a subset of the earlier CLIPS shell (CLIPS, 2003) in

Java. Its reasoning is based on a list of known facts and a set

of rules that try to match on these facts in its fact base. Rule-

based reasoning of Jess inference engine is mostly Rete-

based forward chaining, but backward chaining is supported

as well.

Jess is a simple, yet powerful enough tool to allow for

building a number of industry-strength ES applications

(Friedman-Hill, 2002). Its major advantage is its capability

to easily integrate with other Java programs through its

well-defined API for controlling the reasoning engine from

Java (Eriksson, 2003). Java programs can send expressions

to the Jess inference engine for evaluation, and it is easy to

extend Jess with new functions in Java because it is an open-

source freeware. In addition, Jess implements some

additional functionality not provided by CLIPS.

However, Jess lacks a GUI. A couple of members of the

GOOD OLD AI research group (http://goodoldai.org.yu),

based at the University of Belgrade, Serbia and Montenegro,

have ventured into an R&D project of designing and

developing a GUI for Jess, called JessGUI, suitable for all

platforms that support Java Virtual Machine. JessGUI v. 1.0

is now complete, and is already used in practical projects

and as a teaching tool. This paper describes design and

implementation of JessGUI v. 1.0 and experiences so far

with using it along with Jess in practice.

The paper is organized as follows. Section 2 defines

precisely what we wanted JessGUI to provide, enable, and

support. Section 3 briefly overviews some other current

efforts related to ES and ES shells GUI, and more

specifically to Jess and its applications. Sections 4 and 5

describe the overall organization of JessGUI, its communi-

cation with Jess’ built-in knowledge representation tech-

niques and reasoning mechanisms, and details of its design.

Section 6 covers one of JessGUI’s most important features,

using eXtensible Markup Language (XML) advantages to

ensure for easy interoperability between Jess-based systems

and other XML applications. Section 7 discusses experi-

ences with using Jess/JessGUI so far and advantages and

disadvantages noticed. Section 8 summarizes the paper and

indicates directions for future development of JessGUI.

2. Problem statement

JessGUI project objectives include the following:

† the GUI should make Jess knowledge base building easy for

developers, with minimum requirements in terms of know-

ledge of details of Jess knowledge representation format;

† from the ES developers’ perspective, the GUI should look

as an integral part of the shell (i.e. it is the Jess/JessGUI

combination that the ES builders normally use as the

development environment);

† it should be easy to integrate with Jess’ built-in knowledge

representation and reasoning tools;

† it should enable building and running both stand-alone

and Web-based ES applications;

† it should undergo a thorough testing through development

of a number of simple practical applications;

† it should facilitate interoperability between Jess knowl-

edge bases and external Web applications;

† it should be open for further development, extensions,

and integration with external intelligent tools.

JessGUI is now being constantly tested, evaluated, and

maintained based on the users’ comments and suggestions.

The project is developing in a wider context of related R&D

efforts both within the GOOD OLD AI group and elsewhere.

3. Related work

3.1. Web-based expert systems

One important line of ES research that we follow in

developing JessGUI is related to Web-based ES. To deploy

a Web-enabled ES, there are a number of architectural

approaches from which we may want to start. The most

common is the HTML-CGI architecture: The user interacts

with HTML entry forms in a Web browser; information

entered by the user is sent to the Web server which forwards

it to the CGI (Common Gateway Interface) program which

then replies with new HTML pages (Alpert, Singley, &

Fairweather, 2000; Eriksson, 1996). All the expert function-

ality resides on the server side (in the CGI program), but the

user interacts with it using a standard Web browser.

Another option might be distributed client–server

architecture—a downloadable Java applet contains the

user interaction portion of the Expert system, and commu-

nicates directly with the server application using a socket

connection or other inter-program communication mechan-

ism—some of the expert behavior resides in the client, some

in the server (Eriksson, 1996; Potter et al., 2001).

3.2. Knowledge interchange and interoperability

The second line of research that we follow closely is

related to the efforts of making the knowledge represented

ESWA 1175—26/12/2003—14:41—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx2

ARTICLE IN PRESS

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

http://www.exsys.com
http://www.vanguardsw.com/
http://www.vanguardsw.com/
http://www.aaai.org/aitopics/html/expert.html
http://www.pcai.com/web/ai_info/expert_systems.html
http://www.pcai.com/web/ai_info/expert_systems.html
http://goodoldai.org.yu

UNCORRECTED P
ROOF

on the Web interoperable and ready to be shared between

applications. One such effort is The Rule Markup Initiative

(http://www.dfki.uni-kl.de/ruleml/) whose mission is to

define a shared Rule Markup Language (RuleML), permit-

ting both forward (bottom-up) and backward (top-down)

rules in XML for deduction, rewriting, and further

inferential-transformational tasks (Boley, 2001). Another

important one is The eXtensible Rule Markup Language, or

XRML, that enables identification of implicit rules

embedded in Web pages, interchanging them with struc-

tured-format rule-based systems, and accessing them by

different applications (Lee & Sohn, 2003).

3.3. Extensions, upgrades, and applicability of Jess

We also monitor recent efforts related to integrating Jess

with other development environments, as well as contri-

butions of other research groups to the evolution of Jess

itself. The most notable recent work in that direction is

presented by Eriksson (2003). He has developed a plug-in

called JessTab (www.ida.liu.se/~her/JessTab), which inte-

grates Jess with Protégé-2000, a popular, modular ontology

development and knowledge acquisition tool developed at

Stanford university (http://protege.stanford.edu/). JessTab

enables a Jess engine to run inside the Protégé-2000

framework and lets users build knowledge bases in

Protégé-2000 that work with Jess programs and rule bases.

It takes advantage of the Jess API to map information in the

Protégé knowledge base to Jess facts and to extend Jess with

additional functions for communication with Protégé-2000

(Eriksson, 2003).

Program JessWin1 represents probably the first attempt to

introduce certain graphical elements in the Jess develop-

ment environment, thus making it more user-friendly.

However, its graphics, reduced to the use of windows, is

fairly modest and as such does not significantly enhance the

quality of interaction between the user and Jess. JessWin

users still need perfect knowledge of Jess syntax in order to

create valid ES. Another important contribution to Jess

evolution is FuzzyJess, an extension of Jess that enables

usage of fuzzy facts. It was developed through integration of

Jess and NRC FuzzyJ Toolkit,2 a set of Java(tm) classes that

provide the capability for handling fuzzy concepts and

reasoning. It is also worth noting that Jess’ capabilities were

further extended with JavaMailFunctions,3 new user

defined functions interfacing to Sun’s JavaMail 1.1 API.

In order to integrate two Java-supported technologies,

Jess and Java XML parser, Leff (2001) developed Jess User

Functions that load XML documents and convert the

Document Object Model (DOM) tree into a series of Jess

facts. A fact is created for each XML tag and each attribute

found in the document loaded. Then ordinary Jess rules can

be used to reason about the XML document loaded. Also

rules themselves can be expressed in XML. Detailed

examples using these XML/Jess extensions can be reached

at http://ecitizen.mit.edu/ecap3.html. Left’s approach is

useful because it demonstrates an integration of XML and

Jess, but it cannot be used for representing all Jess’

knowledge base features (e.g. relations between a template

and its instances, function definitions, etc.). The importance

of integrating Jess with XML is also discussed in the

experiences of other developers at http://herzberg.ca.sandia.

gov/jess/devlog.shtml. In this context, XML support means

to be able to convert easily from Jess scripts to an XML

representation and back. To implement this, again, what is

needed is a fast, flexible parser, with excellent error

reporting and a public API.

3.4. Research context of JessGUI development

The idea of developing JessGUI emerged along with

other important research activities and results achieved by

the GOOD OLD AI group—many of the group’s activities

are closely related to ES technology. Devedžić and Radović

(1999) have proposed a multi-layered framework for

building intelligent systems, called OBOA, which incorpor-

ates a number of ES techniques. More recently, a number of

fuzzy logic tools have been developed in accordance with

the OBOA framework; they make the basis of the more

specific Fuzzy OBOA framework (Šendelj, 2003). A fuzzy

ES development tool called FES is developed to fit Fuzzy

OBOA and used to implement a couple of fuzzy ES in a

medical domain. Jess has been explicitly used in Code

Tutor, a Web-based intelligent tutoring system for fast

students’ briefing in the area of radio-communication

(Šimić & Devedžić, 2003). A novel design of forward-

chaining rule-based inference engine has been implemented

as an interoperable software component (Čakić & Devedžić,

1999), and a Web-based ES for diagnosis of car mal-

functioning was developed (Andrić, Devedžić, & Andrejić,

2003)).

4. Proposed solution

The main idea of the JessGUI project was to develop a

GUI for Jess ES Shell which would make this ES

development environment more user friendly and much

easier to work with, hence enlarging the number of its

potential users.

Important advantages of the new user interface (UI) in

comparison with the existing one are as follows:

† Interaction and dialogs using familiar graphical elements

instead of plain command prompt—JessGUI enables

1 Developed by William E. Wheeler, it can be freely downloaded from

the Jess official web site http://herzberg.ca.sandia.gov/jess under the link

‘Users’ contributions’.
2 The toolkit was developed at the National Research Council of

Canada’s Institute for Information Technology.
3 Written by Thomas Barnekow, they can be downloaded from http://

herzberg.ca.sandia.gov/jess/user.shtml.

ESWA 1175—26/12/2003—14:41—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 3

ARTICLE IN PRESS

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

http://www.dfki.uni-kl.de/ruleml/
http://www.ida.liu.se/~her/JessTab
http://protege.stanford.edu/
http://ecitizen.mit.edu/ecap3.html
http://herzberg.ca.sandia.gov/jess/devlog.shtml
http://herzberg.ca.sandia.gov/jess/devlog.shtml
http://herzberg.ca.sandia.gov/jess
http://herzberg.ca.sandia.gov/jess/user.shtml
http://herzberg.ca.sandia.gov/jess/user.shtml

UNCORRECTED P
ROOFusers to work with windows, buttons, text fields and other

graphical objects which are essential parts of UI of

modern applications. It is much more convenient and less

time-consuming than typing complicated constructs at

the command prompt.

† Users need only the knowledge of the basic Jess concepts

instead of the complete syntax of the CLIPS language:

JessGUI offers an alternative to learning complex

structures that are part of CLIPS, which Jess has inherited

from its predecessor.

JessGUI design was based on the layout of Protégé-

2000s GUI. Just like the UI of Protégé-2000, JessGUI has a

few panels, one for each of Jess’ concepts.

4.1. Use cases

The main use cases (UC) of the JessGUI application,

implementing the options of the main menu, are:

† Create new ES Project

† Open existing ES Project

† Save ES Project

† Run (Start Jess Engine)

UC ‘Create New ES Project’ is a complex UC and can be

further decomposed into separate UCs each representing the

creation of one of the Jess’ concepts. This decomposition

reveals the following UCs:

† Add Module

† Add Global Variable

† Add User Function

† Add Rule

† Add Frame

† Add Facts

The first four UCs are rather simple (elementary) and not

particularly interesting. The last two UCs need further

clarification.

The ‘Add Frame’ UC (Fig. 1a) describes the creation of

the Jess concept called frame,4 that represents a template for

instantiating unordered facts (see Section 4.2 for more

details). Each frame is composed of one or more slots.5 This

UC includes the elementary UC ‘Add Slot’, and can be

extended by another two elementary UCs, ‘Edit Slot’ and

‘Delete Slot’.

‘Add Facts’ is the most complex UC. It is further

decomposed into separate UCs that describe the process of

instantiating ordered and unordered facts, both as single

facts or as groups of facts (i.e. through deffacts structure). Its

decomposition is presented in the use case diagram in

Fig. 1b.

4.2. Links between JessGUI and jess

JessGUI does not directly operate with Java API that Jess

provides for representing its main concepts (**Section 5.3).

Instead of using Jess’ classes for representing rules, frames

and other concepts, JessGUI introduces its own classes for

the purpose of representing these concepts.

Since the Jess inference engine can process a knowledge

base only if it is represented either with classes that Jess

provides for that purpose, or as a document in CLIPS format

(.clp file), it was essential to transform data stored in

instances of JessGUI classes to one of the formats just

mentioned. As an important early design decision was to

Fig. 1. Use-case diagrams representing complex UCs: (a) ‘Add Frame’ (b) ‘Add Facts’.

4 The original name of this concept in Jess terminology is ‘template’, but

in the JessGUI project the term ‘frame’ is used in order to achieve higher-

level generalization and conformance with a wider spectrum of AI

community developers.
5 The concept of frames and slots is similar to the concept of records and

their fields in standard programming languages.

ESWA 1175—26/12/2003—14:41—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx4

ARTICLE IN PRESS

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

UNCORRECTED P
ROOF

enable permanent storage of knowledge bases in XML

documents for the purpose of their easier reusability, the

painless solution of the above dilemma was to take

advantage of eXtensible Stylesheet Language Transform-

ations (XSLT, http://www.w3.org/TR/xslt) and transform

XML files into the corresponding CLIPS files familiar to the

Jess’ inference engine. Fig. 2 depicts this idea.

Jess enables building rule-based ES whose knowledge

base is composed of two important structures: facts and

rules. A fact is a construct that defines a piece of information

that is known to be true, whereas a rule is an if/then

statement that defines the set of facts that must be true (the if

part) before a set of actions (the then part) can be executed

(Friedman-Hill, 2003). In Jess, there are three kinds of facts:

ordered facts, i.e. facts without a predefined structure;

unordered facts, i.e. facts whose construction is based on

using frames or templates; definstance facts, i.e. facts that

are actually instances of user-defined Java classes. JessGUI

v.1.0 supports creating the first two types of facts.

From JessGUI, one can run both forward- and back-

ward-chaining inferences that Jess’ inference engine

provides. This is configurable—before choosing the

‘Run’ menu option, the user should set the desired

configuration of the inference engine in the ‘Options’

menu. Since JessGUI was conceptualized as an extensible

ES building tool, providing support for Jess’ native

inference methods presents just the first step in its

development. Application is open for further extensions

and its capabilities will be enhanced by adding support for

other inference methods, some of them developed by

members of the GOOD-OLD-AI group.

5. Design details

Classes created during the development of JessGUI can

be categorized into two main categories:

1. presentation layer classes, i.e. classes that implement

frames and dialogs of the JessGUI application;

2. middle layer classes, i.e. classes that implement the

application logic.

The classes corresponding to the third layer of the

classical concept of three-tier software architecture, i.e. the

classes that should support communication with persistent

data storage, were not implemented. Instead of storing data

in a database, JessGUI enables its users to store their

projects in the form of.xml or.clp files.

5.1. Presentation layer

Presentation layer classes are shown in Fig. 3. For the sake

of clarity, the diagram shows only the classes that implement

the most important panels and dialogs of the developed

graphical user interface. Analyzing the diagram, one can

notice that each Jess concept has its associated panel or

dialog and a class that implements that panel/dialog.

5.2. Application layer

Application-layer classes can be further divided into the

following two categories:

1. classes that represent Jess’ main concepts;

2. controllers and mediators.

5.2.1. Representing Jess concepts

JessGUI application does not use classes that Jess ES Shell

provides for representing its main concepts (rules, facts,

templates, etc.). Instead, at the level of the application logic,

there are classes that represent each of those concepts (one

class per concept). These classes, through their attributes and

methods, support storing all data and knowledge that the

knowledge-base developer provides. Decision not to work

with Jess’ classes was based on the following reasons:

† classes that Jess provides for representing some of its

concepts cannot be directly instantiated—only Jess parser

can create their instances while parsing the file that

contains ES code (file with.clp extension);

† achieving higher level of generalization and reusability—

the knowledge base created using JessGUI can be

processed by different inference engines other then the

one that Jess uses.

The class diagram shown in Fig. 4 depicts the structure

and interconnections of previously discussed JessGUI

classes that implement the basic Jess concepts. In order to

Fig. 2. The major link between JessGUI and Jess.

ESWA 1175—26/12/2003—14:41—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 5

ARTICLE IN PRESS

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

http://www.w3.org/TR/xslt

UNCORRECTED P
ROOF

Fig. 4. Classes that represent the main Jess concepts.

Fig. 3. Presentation layer classes.

ESWA 1175—26/12/2003—14:42—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx6

ARTICLE IN PRESS

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

UNCORRECTED P
ROOF

avoid clutter, the class diagram does not show the methods

for setting and getting attribute values. A quick study of

attribute lists of the classes shown on the diagram is enough

to confirm that these classes can capture all data necessary

for constructing the concepts they represent.

The class diagram shown in Fig. 5 represents the classes

that cooperate in implementing the complex use case ‘Add

Frame’. The classes ‘FrameControler’ and ‘Mediator’ are

responsible for providing low-level coupling between

presentation and application logic layers.

5.2.2. Controllers and mediators

A software pattern is named problem/solution pair that

can be applied in a new problem situation (Larman, 1997).

Patterns are general principles and solutions that are used in

software development.

General Responsibility Assignment Software Patterns, or

GRASP patterns, aim to resolve problems related to assign-

ing responsibilities to objects during software design. All

main GRASP patterns, namely ‘Expert’, ‘High Cohesion’,

‘Low Coupling’ and ‘Controller’, were used while designing

JessGUI. For example, JessGUI uses one controller class for

governing each implemented use case, as well as one class

that represents global controller that coordinates work of

other controller classes and manages main operations.

Design of JessGUI was based also on well-known design

patterns, or GoF patterns. They represent descriptions of

communicating objects and classes that are customized to

solve a general design problem in a particular context

(Gamma, Helm, Johnson, & Vlissides, 1995). For example,

JessGUI takes advantages of the ‘Mediator’ pattern that

introduces an object responsible for interaction between a set

of objects, thus promoting low-level coupling between them.

JessGUI’s classes ‘Mediator’, ‘FramesControler’ and ‘Facts-

Controler’ implement this pattern. Their interconnection can

be observed in Fig. 5.

5.3. Software organization and packages

Software classes developed as a part of JessGUI project

are logically organized into three main groups:

1. classes that implement panels and dialogs of the user

interface;

2. classes responsible for handling system events and

supporting work with XML files;

3. classes that represent the main concepts of the Jess ES

Shell.

This logical decomposition can be graphically rep-

resented using software packages. The package with classes

from the first group mentioned above is shown in Fig. 6.

5.4. Example screens of JessGUI

In order to illustrate interface design and look-and-feel of

JessGUI, Figs. 7a and 8 show panels for creating frames and

rules, respectively.

Fig. 7a shows a screenshot of JessGUI, while the panel

‘Frames’ is active. This panel enables users to define the

structure of frames that would later serve as templates for

creating unordered facts. The user has to enter a name for

the frame and optionally a description that should clarify the

purpose of the frame. Each frame contains one or more slots.

The user creates them by pressing the ‘Add’ button, thus

invoking a special-purpose dialog, shown in Fig. 7b, for

defining features for each slot. Each slot, after its features

have been specified, is represented in the table that occupies

the central part of the panel. The user has also an option to

derive a new frame from an existing one. In that case, the

new frame inherits all slots from its ‘parent’ frame and

Fig. 5. Classes that implement the ‘Add Frame’ use case.

Fig. 6. The package with presentation layer classes.

ESWA 1175—26/12/2003—14:44—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 7

ARTICLE IN PRESS

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

UNCORRECTED P
ROOFautomatically adds these inherited features to the frame, so

the user should specify only the new slots.

Fig. 8 shows the panel ‘Rules’ for creating rules as the

principal knowledge elements of the Jess knowledge base.

As it can be noticed in the figure, this panel enables users to

specify the rule’s name, priority, whether it will have auto-

focus or not and optionally to provide its short description.

After making these specifications, the user should define

conditions (IF-part) and actions (THEN-part) of the rule.

After creating a rule, the user can check its validity before

saving it, by pressing the ‘Validate’ button that would be

a signal for the system to initiate parsing the rule and

producing a message, in the form of dialog box, to inform

the user of the results of the parsing process.

6. Interoperability issues

An important aspect of JessGUI is interoperability, i.e.

enabling other Web (or non-Web) applications to access and

use Jess knowledge base. Jess knowledge base is normally

represented in Jess/CLIPS format. However, for parsing

Fig. 7. (a) Panel for specifying frame’s properties. (b) Dialog for slot definition.

Fig. 8. Panel that supports rule creation.

ESWA 1175—26/12/2003—14:45—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx8

ARTICLE IN PRESS

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

UNCORRECTED P
ROOF

such documents one must develop his/her own parser, which

is difficult and time-consuming. It is more efficient to use

XML-based knowledge-base representation, because there

are many freeware XML parsers that can be used in a

number of applications. Furthermore, XML documents (i.e.

knowledge base) can be transformed to other XML or non-

XML documents using XSLT. Of course, XML is also

a fundamental technology for knowledge representation on

the Semantic Web.

We developed an XML format for Jess knowledge bases

using W3C’s XML Schema for defining XML document

grammar, and made it available to Jess knowledge-base

builders through JessGUI. This XML format can contain

and represent all Jess concepts (e.g. module, global variable,

etc.). Speaking in terms of XML Schema definition, for each

of these concepts we defined a proper complex type. We

used UML profile for modeling XML Schema (Carlson,

2001) in order to obtain a better readability as well as a

better documentation of the JessGUI’s XML format. Fig. 9

depicts a class diagram for the content model of the XML

format root element (i.e. knowledgeBase). This element can

contain an unbounded number of XML elements: module,

globalVar, deffact, fact, template, function, and rule. Each

of these elements represents a real Jess concept. In Fig. 9 we

show only a part of the XML Schema definition, while other

elements are also defined using a similar procedure.

Each JessGUI’s class is responsible for saving the state

of its objects’ attributes in XML format through its

dedicated a save method. Fig. 10 shows how this is

implemented in the Rule class. One can note that we do

not dynamically create a DOM tree, but we save XML

documents as a regular text file. This way we prevent

potential problems in the case we have a large knowledge

base (i.e. a large DOM tree). After executing the save

method from Fig. 10 for a real-application JessGUI rule, an

XML document is produced that looks as in Fig. 11.

Having XML-based format for JessGUI is a good feature

for interoperability with other knowledge-based systems,

but this format cannot be used by the Jess interpreter. The

Jess interpreter in its basic distribution interprets only

Jess/CLIPS code. Thus, we need a way to transform the

JessGUI XML format into the Jess/CLIPS code. XSLT is a

natural solution for this problem. We developed an XSLT

that transforms JessGUI XML format into Jess/CLIPS

format, and this XSLT is performed in JessGUI when one

wants to export a JessGUI knowledge base into Jess/CLIPS

format. A part of this XSLT (i.e. XSLT template) that

transforms JessGUI XML deffact into Jess/CLIPS deffact

statement looks as in Fig. 12.

Developing similar XSLTs we can support interoper-

ability with other Semantic Web tools. For example, if one

wants to import a Jess/JessGUI knowledge base into

Protégé-2000, then it is enough to develop an XSLT from

JessGUI format to RDF(S) format that can be imported in

Protégé-2000. Of course, in this example there is a

constraint that Protégé-2000 can import only templates

and unordered facts because RDF(S) is being used.

Importing a Jess knowledge base in Protégé-2000 can be

useful, because it is a way to produce an ontology

(Devedžić, 2002). Other limitations can occur in the case

of a knowledge base interchange with some other systems.

This is because other systems do not support all Jess

features. Currently, we make efforts towards achieving

interoperability between JessGUI and JavaDON (a tool for

Fig. 9. UML class diagram of the root element in the JessGUI XML format.

ESWA 1175—26/12/2003—14:47—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 9

ARTICLE IN PRESS

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

UNCORRECTED P
ROOF

developing intelligent systems developed by GOOD OLD

AI members and based on OBOA framework). Since

JavaDON also uses XML-based format for knowledge

base it is enough to develop an appropriate XSLT.

7. Practical experience with JessGUI

So far, we used JessGUI in practical developments in two

ways. First, in order to improve and stabilize JessGUI itself,

we re-developed the knowledge bases of some ES we

developed earlier, this time using Jess/JessGUI. An example

is Defector, an ES for diagnosing malfunctions on cars,

http://galeb.etf.bg.ac.yu/~aandreja/defektator/defektator.

htm (Andrić et al., 2003). Fig. 13 shows a screenshot from

Defector. Such re-developments were comparatively easy

since we started from working systems, but were also very

important for us in terms of noticing and correcting some

weaknesses of JessGUI from the developers’ perspective.

Second, we used Jess/JessGUI for developing new ES.

Two of them are a partner-matching ES (currently under

development and testing) and Travel Guide, a just

completed ES that recommends tourists destinations,

means of transportation, facilities, activities, and the like

Fig. 10. An example of JessGUI class and its method for saving in XML format.

Fig. 11. An example an XML document is produced by saving a JessGUI rule in XML format.

ESWA 1175—26/12/2003—14:49—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx10

ARTICLE IN PRESS

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

http://galeb.etf.bg.ac.yu/~aandreja/defektator/defektator.htm
http://galeb.etf.bg.ac.yu/~aandreja/defektator/defektator.htm

UNCORRECTED P
ROOF

(Fig. 14). Both systems are large-scale systems and involved

a number of developers. Their evaluations of JessGUI were

an invaluable feedback on JessGUI’s usability.

Jess/JessGUI is already in use in teaching ES courses

at three higher-education institutions. The students are

exercise simple ES development and understanding of

basic knowledge representation and reasoning techniques

using Jess/JessGUI in the labs, and also use it to do their

required projects. We have already conducted informal

evaluations of Jess/JessGUI with students. They were

asked to compare Jess’ native command-line UI to

JessGUI. Along with positive feelings about JessGUI and

stressing more comfortable work with that without

JessGUI, the students have also provided critical opinions

that were extremely useful for improving JessGUI. Being

a still evolving ES building tool, JessGUI naturally still

has drawbacks that are either in the process of

elimination or are planed to be resolved in the nearest

future.

The current version of the JessGUI program does provide

a certain level of help in order to simplify the process of

creating the knowledge base, but not full support. The

support that JessGUI provides are three dialogs that enable

users to browse through the list of Jess-intrinsic and user-

defined functions, Jess conditional elements and previously

defined global variables (if any), respectively. This is

probably the main drawback of JessGUI, since it imposes

the burden of learning CLIPS syntax on its users. The

problem stems from the fact that the members of the GOOD

OLD AI group, not having at their disposal the complete

Fig. 12. An example XSLT template of JessGUI’s format converter.

Fig. 13. A screenshot from the Defector ES.

ESWA 1175—26/12/2003—14:50—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 11

ARTICLE IN PRESS

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

UNCORRECTED P
ROOF

specification of the Jess language, were not able to create a

program that would automatically check the validity of each

of the knowledge base elements.

Another disadvantage of the JessGUI v.1.0 is its inability

to represent uncertainty and to reason with uncertain data.

Since Jess does not offer these functionalities and since the

first version of JessGUI was aimed to provide support only

for Jess’ native options, representing and reasoning with

uncertainty were not tackled until the second cycle of the

JessGUI development process has begun. It is expected that

the next version will be extended to overcome both this

problem and the one presented in the previous paragraph.

JessGUI v.1.0 cannot import existing Jess/CLIPS

documents. This limitation disables JessGUI to read,

maintain, and extend existing Jess projects using advantages

of JessGUI. In order to support this feature it is necessary to

develop a parser for Jess/CLIPS format, but this is more

difficult and time-consuming than XSLT developing. We

also plan extending JessGUI’s capabilities in the next

version with such a converter.

8. Conclusions

The major advantages of the GUI that JessGUI provides

over the UI originally supported by Jess ES Shell can be

summarized as follows:

† working in graphical environment, like the one that

JessGUI offers, is always preferred to using plain text

editors or typing commands in DOS prompt that Jess

offers as the only options;

† JessGUI facilitates the process of building Jess-based ES

by enabling the users who are not familiar with details of

the Jess’ syntax to specify the content of the knowledge

base they wish to create;

† the structure of the created knowledge base is much

clearer and easier to browse;

† JessGUI supports validation of some of the knowl-

edge-base elements immediately after their creation,

thus preventing run-time errors.

Jess/JessGUI is currently used in developing both simple

and complex ES within our group, as well as a teaching and

learning tool in undergraduate and graduate courses on ES

at our university. Its next version will be made a shareware,

hoping that a large population of ES developers will

contribute to its widespread use.

The next version of JessGUI, currently evolving from

JessGUI v.1.0 will eliminate the need for users to learn

details of Jess/CLIPS syntax. Further improvements will

include the capabilities of representing uncertainty in rules

and reasoning with uncertain data, as well as importing and

extending existing Jess/CLIPS projects through JessGUI.

References

Alpert, S. R., Singley, M. K., & Fairweather, S. G (2000). Porting a

standalone intelligent tutoring system to the web. Proceedings of the

international workshop on adaptive and intelligent web-based edu-

cational systems, Montreal, Canada (pp. 1–11).

Andrić, A., Devedžić, V., & Andrejić, M (2003). Web-based learning

environment as a passive web document. Proceedings of the third IEEE

international conference on advanced learning technologies, ICALT

2003, Athens, Greece (pp. 22–26).

Boley, H (2001). The rule markup language: RDF-XML data model, XML

schema hierarchy, and XSL transformations. Invited Talk, INAP2001,

Tokyo, October 2001. Available at: http://www.dfki.uni-kl.de/ruleml/,

last visited September 26th, 2003.

Fig. 14. A screenshot from Travel Guide.

ESWA 1175—26/12/2003—14:51—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx12

ARTICLE IN PRESS

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

http://www.dfki.uni-kl.de/ruleml/

UNCORRECTED P
ROOF

Čakić, J., & Devedžić, V. (1999). Pieces of mind: component-based

software development for artificial intelligence. In I. F. Imam,

Y. Kodratoff, A. Dessouki, & M. Ali (Eds.), Multiple approaches to

intelligent systems (Vol. 1611) (pp. 879–888). Lecture notes in

computer science (LNCS), Berlin: Springer.

Carlson, D. (2001). Modeling XML applications with UML: Practical e-

business applications. Boston: Addison-Wesley.

CLIPS (2003). CLIPS, a tool for building expert systems. Available at:

http://www.ghg.net/clips/CLIPS.html, last visited September 26th,

2003.

Devedžić, V. (2002). Understanding ontological engineering. Communi-

cations of the ACM, 45(4), 136–144.

Devedžić, V., & Radović, D. (1999). A framework for building intelligent

manufacturing systems. IEEE Transactions on Systems, Man, and

Cybernetics. Part C. Applications and Reviews, 29(3), 402–419.

Durkin, J., & Durkin, J. (1998). Expert systems: Design and development.

New York: Prentice Hall.

Eriksson, H. (1996). Expert systems as knowledge servers. IEEE Expert,

12(2), 14–19.

Eriksson, H. (2003). Using JessTab to integrate protégé and jess. IEEE

Intelligent Systems, 18(2), 43–50.

Forgy, C. (1982). Rete: a fast algorithm for the many pattern/many object

pattern match problem. Artificial Intelligence, 19, 17–37.

Friedman-Hill, E. J (2002). Jess, the expert system shell for the Java

Platform, v. 6.1a4 User’s Manual. Available at: http://herzberg.ca.

sandia.gov/jess/, last visited September 26th, 2003.

Friedman-Hill, E. J. (2003). Jess in action: Java rule-based systems.

Stockholm: Manning.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:

Elements of reusable object-oriented software. Reading, MA: Addison-

Wesley.

Giarratano, J. C. (1998). Expert systems: Principles and programming (3rd

ed.). London: Brooks/Cole.

Haley Enterprise, Inc (1996). Reasoning about Reteþþ . White paper.

Available at: http://www.haley.com/, last visited September 26th, 2003.

Hamada, K., et al. (1995). Hybridizing a genetic algorithm with rule-based

reasoning for production planning. IEEE Expert, 11(5), 60–67.

Hendler, J., Stoffel, K., Taylor, M., Rager, D., & Kettler, B (1997). PARKA-

DB: a scalable knowledge representation system—database PARKA.

Available at http://www.cs.umd.edu/projects/plus/Parka/parka-db.html,

last visited September 26th, 2003.

Larman, C. (1997). Applying UML and patterns. Englewood Cliffs, NJ:

Prentice Hall.

Lee, J. K., & Sohn, M. M. (2003). The eXtensible rule markup language.

Communications of the ACM, 46(5), 59–64.

Leff, L (2001). Automated reasoning with legal XML documents.

Proceedings of the eighth international conference on artificial

intelligence and law (pp. 215–216). New York: ACM Press

Potter, W. D., Deng, X., Li, J., Xu, M., Wei, Y., & Lappas, I. (2003). A web-

based expert system for gypsy moth risk assessment. Computers and

Electronics in Agriculture, Available at: http://webster.cs.uga.edu/

~potter/dendrite/iufro-gypsy.PDF, last visited September 26th, 2003.

Sandia National Laboratories (2003). Jess: the rule engine for the Javae

platform. Available at: http://herzberg.ca.sandia.gov/jess/, last visited

September 26th, 2003.

Šendelj, R., & Devedžić, V. (2003). Fuzzy systems based on component

software. Fuzzy Sets and Systems, in press.

Šimić, G., & Devedžić, V. (2003). Building an intelligent system using

modern Internet technologies. Expert Systems with Applications, 25(3),

231–246.

Yen, J., Juang, H.-L., & MacGregor, R. (1991). Using polymorphism to

improve expert systems maintainability. IEEE Expert, 6(2), 48–55.

Jelena Jovanović is an MS student and a tutor at FON, School of

Business Administration, University of Belgrade, Serbia and Mon-

tenegro. She has received her BS degree in information systems from

FON in 2003. Her research interests include intelligent systems,

knowledge representation, XML technologies, and software engineer-

ing. She is currently pursuing her MS thesis in the area of intelligent

systems design. She is a member of the GOOD OLD AI research group.

Dragan Gašević is a PhD candidate at FON, School of Business

Administration, University of Belgrade, Serbia and Montenegro, and a

senior lecturer of computer science at the Military Academy, Belgrade,

Serbia and Montenegro. He has received his BS degree in computer

science from the Military Academy, Belgrade (2000), and his MS

degree also in computer science from The School of Electrical

Engineering, University of Belgrade (2002). His research interests

include Petri nets, knowledge representation, ontologies, Semantic

Web, intelligent systems, XML and related standards and technologies,

and software engineering (MDA). So far, he has authored/co-authored

more than 30 research papers. He is a member of the GOOD OLD AI

research group, and a student member of the ACM.

Vladan Devedžić is an associate professor of computer science at the

Department of Information Systems, FON, School of Business

Administration, University of Belgrade, Serbia and Montenegro. He

has received all of his degrees from The School of Electrical

Engineering, University of Belgrade, Serbia and Montenegro (BS,

1982; MS, 1988; PhD, 1993). His main research interests include

intelligent systems, knowledge representation, ontologies, Semantic

Web, intelligent reasoning, software engineering, and applications of

artificial intelligence techniques to education and medicine. So far, he

has authored/co-authored about 180 research papers published in

international and national journals and conferences. His major long-

term professional goal is a continuous effort to bring close together the

ideas from the broad fields of intelligent systems and software

engineering. He has developed several practical intelligent systems

and tools, and actively participates to several ongoing projects in

industry and in academia.

ESWA 1175—26/12/2003—14:52—SATHYA—90583— MODEL 5

J. Jovanović et al. / Expert Systems with Applications xx (0000) xxx–xxx 13

ARTICLE IN PRESS

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

http://www.ghg.net/clips/CLIPS.html
http://herzberg.ca.sandia.gov/jess/
http://herzberg.ca.sandia.gov/jess/
http://www.haley.com/
http://www.cs.umd.edu/projects/plus/Parka/parka-db.html
http://webster.cs.uga.edu/~potter/dendrite/iufro-gypsy.PDF
http://webster.cs.uga.edu/~potter/dendrite/iufro-gypsy.PDF
http://herzberg.ca.sandia.gov/jess/

	A GUI for Jess
	Introduction
	Problem statement
	Related work
	Web-based expert systems
	Knowledge interchange and interoperability
	Extensions, upgrades, and applicability of Jess
	Research context of JessGUI development

	Proposed solution
	Use cases
	Links between JessGUI and jess

	Design details
	Presentation layer
	Application layer
	Software organization and packages
	Example screens of JessGUI

	Interoperability issues
	Practical experience with JessGUI
	Conclusions
	References

