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Abstract7

This paper describes hierarchical modeling of fuzzy logic concepts that has been used within the recently
developed model of intelligent systems, called OBOA. The model is based on a multilevel, hierarchical,9
general object-oriented approach. Current methods and software design and development tools for intelligent
systems are usually di5cult to extend, and it is not easy to reuse their components in developing intelligent11
systems. The OBOA model tries to reduce these de7ciencies. The model starts with a well-founded software
engineering principle, making clear distinction between generic, low-level intelligent software components,13
and domain-dependent, high-level components of an intelligent system. This paper concentrates on modeling
and implementation of fuzzy logic concepts within the hierarchical levels of the OBOA model. The fuzzy15
components described are extensible and adjustable. As an illustration of how these components are used in
practice, a practical design example from the domain of medical diagnosis is shown. The paper also suggests17
some steps towards future design of fuzzy components and tools for intelligent systems.
c© 2003 Published by Elsevier Science B.V.19
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1. Introduction21

In the general domain of object-oriented software engineering, hierarchical modeling refers to
layered software architectures [1], in which:

23
• each component in a system belongs to a certain conceptual layer (layers are sets of classes at

the same level of abstraction),25
• more complex components are designed starting from simpler components, from the same layer

or from the lower layers,27
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• A hierarchically organized tree of components that spans across multiple layers can be drawn to1
represent the architecture of the system.

One particularly important extension of the concept of layered software architecture is the orthog-3
onal architecture [18]. In the orthogonal architecture, classes (objects) are organized into layers and
threads. Threads consist of classes implementing the same functionality, related to each other by the5
dependency relationship [2,9]. Threads are “vertical”, in the sense that their classes belong to dif-
ferent layers. Layers are “horizontal”, and there is no dependency relationship among the classes in7
the same layer. Hence, modi7cations within a thread do not aJect other threads. Layers and threads
together form a grid. By the position of a class in the architecture, it is easy to understand what9
level of abstraction and what functionality it implements. The architecture itself is highly reusable,
since it is shared by all programs in a certain domain that have the same layers, but may have11
diJerent threads.

These general concepts have been recently applied to modeling intelligent software systems in the13
object-oriented way. As a result, a hierarchical model of intelligent systems, called OBOA (OBject
Oriented Abstraction) has been developed [8]. The model encompasses a wide range of knowledge15
representation methods and inference techniques commonly used today in designing intelligent sys-
tems. The purpose of this paper is to describe how the main concepts of fuzzy logic and fuzzy17
systems, being important modeling techniques and tools in intelligent systems, are supported in the
OBOA model.19

The purpose of this paper is threefold:

• it shows how the concepts of fuzzy logic and fuzzy systems 7t into a more general, object-oriented,21
hierarchical model of intelligent systems (the OBOA model),

• it explains how design of fuzzy intelligent systems can be facilitated by imposing some hierarchical23
structure onto the concepts and tools used in the design process,

• it presents an example of how development of practical fuzzy systems can be alleviated using this25
approach.

The paper is organized as follows. In Section 2, the essence of the OBOA model is described.27
Section 3 is the central section of the paper. It shows how fuzzy concepts 7t into the OBOA model,
and presents some design examples. Sections 4 and 5 show examples of current implementation29
of software components for designing fuzzy systems based on the OBOA model. In Section 6,
some informal performance analysis is presented. Section 7 discusses some related research. Finally,31
Section 8 shows the bene7ts of this kind of modeling fuzzy systems and directions for future
research.33

2. Previous work

The OBOA model has been developed over the years and has been described in a number of35
papers. Its most complete description is presented in [8]. Its development started with the idea of
developing a model to support design of intelligent manufacturing systems. However, soon after37
starting its development we noticed that OBOA can be generalized to modeling intelligent systems
regardless of the application area. The general model has then been instantiated to GET-BITS—the39
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Fig. 1. The OBOA model: (a) the levels of abstraction, (b) dimensions.

model of intelligent tutoring systems [7]. Simultaneously, another line of developing OBOA further1
has been started—that of ontological engineering of intelligent systems based on OBOA [5,6].

This section illustrates how hierarchical modeling has been included into the OBOA model in3
order to facilitate design and development of intelligent systems. It also brieNy shows how the
model supports some well known concepts from the domain of intelligent systems. Other authors’5
work that has inNuenced the development of OBOA is brieNy surveyed in the section on related
research in the end of the paper.7

2.1. Levels of abstraction and dimensions in the OBOA model

The OBOA model de7nes 7ve levels of abstraction for designing intelligent systems, Fig. 1a.9
If necessary, it is also possible to de7ne 7ne-grained sublevels at each level of abstraction. Each
level has associated concepts, operations, knowledge representation techniques, inference methods,11
knowledge acquisition tools and techniques, and development tools. They are all considered as
dimensions along which the levels can be analyzed, Fig. 1b. The concepts of the levels of abstraction13
and dimensions have been derived starting from the orthogonal architecture.

Semantics of the levels of abstractions is easy to understand. In designing intelligent systems,15
there are primitives, which are used to compose units, which in turn are parts of blocks. Blocks
themselves are used to build self-contained agents or systems, which can be further integrated into17
more complex systems. For getting a feeling for how OBOA’s levels of abstraction correspond to
some well known concepts from the domain of intelligent systems, consider the following examples.19

Primitives like plain text, logical expressions, attributes and numerical values are used to compose
units like rules, frames, and diJerent utility functions. These are then used as parts of certain21
building blocks that exist in every intelligent system, e.g. classi7ers, controllers, and planners. At
the system level, we have self-contained systems or agents like learning systems, scheduling agents,23
and knowledge-based diagnostic systems, all composed using diJerent building blocks. Finally, at
the integration level there are multiagent systems, distributed intelligent systems, and Web-based25
intelligent systems.

It should be also noted that the borders between any two adjacent levels are not strict; they are27
rather approximate and “fuzzy”. Several concepts related to intelligent systems can be also treated
at diJerent levels of abstraction.29
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Table 1
Some examples of modeling neural networks and genetic algorithms in the OBOA model

Level Objective Knowledge representation Operations Inference methods Knowledge acquisition

1 Integration Hybrid intelligent
system

2 System Monitoring and
acquisition of
data,

3 Blocks Neural networks (NN) RubNM NN training
Genetic algorithms (GA) Evolution GA GA Reproduction

4 Units Slab, Layer, Dataset Get, Put, Propagate, Propagate, Training, Creating
(Training, Test) Evaluate, Evaluate training set and
Population Fitness, Selection test set

MakeChromosome

5 Primitives Neutron, Link Get, Put, Activation
PatternOfData, function
Gene, Chromosome Initialization, Mutation,

Crossover, Fitness ...

2.2. Well-known paradigms and the OBOA model1

As examples of how some well known paradigms and techniques are encompassed by the OBOA
model, Table 1 shows how neural networks and genetic algorithms 7t in the levels of abstraction3
from Fig. 1. Note that several entries in the table are left empty. The reason is that Table 1 shows
only well known and widely applicable concepts from these two types of intelligent systems.

5

3. Fuzzy logic and fuzzy systems in the OBOA model

Table 2 shows how fuzzy logic and fuzzy systems 7t in the levels of abstraction from Fig. 1.7
Only some of the concepts from fuzzy logic and fuzzy systems were included in the earlier versions
of OBOA [8]. This paper is the 7rst more comprehensive account on how the concepts from fuzzy9
logic and fuzzy systems are represented in OBOA.

The concepts, operations, methods, etc. at each level of abstraction can be directly mapped onto11
sets of corresponding components and tools used in designing intelligent systems.

The complexity and the number of these components and tools grow from the lower levels to the13
higher ones. Consequently, it is quite reasonable to expect further horizontal and vertical subdivisions
at higher levels of abstraction in practical applications of the OBOA model for design and develop-15
ment of intelligent systems. Appropriate identi7cation of such subdivisions for some particular types
of intelligent systems, such as intelligent tutoring systems and intelligent manufacturing systems, is17
the topic of our current research.



UNCORRECTED P
ROOF

FSS4082

ARTICLE IN PRESS
R. 2Sendelj, V. Deved2zi+c / Fuzzy Sets and Systems ( ) – 5

Table 2
Some examples of modeling fuzzy logic concepts in the OBOA model (after �Sendelj, Radovi#c and Deved�zi#c [23] and
�Sendelj [22])

Level Objective Knowledge representation Operations Inference methods Knowledge acquisition

1 Integration

2 System Fuzzy logic expert Interviews, case
system studies, learning

reasoning strategies

3 Blocks FuzzyRule, addRule, editRule, Forward, Fuzzy rule training
ListFuzzyRule, deleteRule, 7ndRule, backward
ListFuzzyVariable, addFV, editFV, inference
Max-MinInference, deleteFV, 7ndFV,
Max-Product Inference

4 Units IfPremise, ThenPremise, GetUnit, AddUnit, Max-Min
FuzzyProposition, EditUnit, inference, Max-

Initialization, Create product
inference

5 Primitives FuzzyVariable, Get, Set, Add, Defuzzy7cation Manual input,
FuzzySet, Delete, methods, measurement
FuzzyFunction, Hedge,
Concentration, Dilation,
Indeed, Power,
Operation, Union,
Complement,
Intersection,
Defuzzy7cation,
Relation

From the software design point of view, components and tools in Table 2 can be considered1
as classes of objects. It is easy to derive more speci7c classes from them in order to tune them
to a particular application. The classes are designed in such a way that their semantics is de7ned3
horizontally by the corresponding level of abstraction and its sublevels (if any), and vertically by
the appropriate key abstractions speci7ed mostly along the concepts. Fig. 2 shows the FuzzyElement5
class hierarchy, represented using the UML notation [9]. Fig. 3 shows more details about a part
of the hierarchy from Fig. 2. The “+1” and “+∗” symbols in the 7gure are attributes of relations7
between classes and their corresponding objects. For example, a certain fuzzy set corresponds to only
one fuzzy variable, whereas multiple fuzzy sets can be de7ned for a single fuzzy variable. These9
facts are denoted by putting “+1” next to the FuzzyVariable class and “+∗” next to the FuzzySet
class in Fig. 3.11

Class interfaces (method procedures) are de7ned mostly from the operations and inference methods
dimensions at each level. The knowledge acquisition and development tools dimensions are used13
to specify additional classes and methods at each level used for important development tasks of
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Fig. 2. FuzzyElement class hierarchy, represented using the UML notation [9].
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List Fuzzy Variable

listFV : Vector

Fuzzy Variable

list FS :Vector
list Hedge :Vector

+*

+1

Fuzzy Set

function :Fuzzy Function

+*

+1

Hedge

modifFS :Fuzzy Set
nonmodifFS :Fuzzy Set

List Hedge

list Hedge :Vector+1+*

Then Premise

list Proposition :Vector
list Relation : Vector

If Premise

list Proposition : Vector
list Relation :Vector

Fuzzy Proposition

fuzzy Variable : Fuzzy Variable
hedge :Hedge
relation :Relation
fuzzy Set : Fuzzy Set

+*

+1

+*+1

+*

+1

Relation+* +1

List Relation

list Relation :Vector

+1

+*

Fuzzy Rule

if Premise :If Premise
then Premise :Then Premise

List Fuzzy Rule

list FR : Vector
+1+*

+1

+1

+1

+1

+*

+1

+*

+1

Fig. 3. Detailed view of a part of the class hierarchy from Fig. 2.

knowledge elicitation, learning, and knowledge management. At each level of abstraction, any class1
is de7ned using only the classes from that level and the lower ones.

4. Implementation and performance3

Using the OBOA model, we have developed interoperable software components [26,27], for the
following fuzzy elements: fuzzy variables, fuzzy propositions, fuzzy rules, Max-Min inference and5
Max-Produce inference. We have developed several other basic fuzzy elements as ordinary classes.
Based on the OBOA model and the software components mentioned, we have also designed and7
implemented a software tool for building fuzzy expert systems, called Fuzzy Expert Systems (FES).
We used Java [29] as the implementation language for all the components and classes, as well as9
for the FES tool.

Press [17] suggests how to test performance of knowledge-based tools like FES, and we used11
his way. We have created a series of test knowledge bases with diJerent numbers of fuzzy rules
in order to analyze FES’s characteristics such as the time needed to read the knowledge base from13
disk, the project’s size, and the problem-solving time. Any such a test knowledge base speci7ed an
output fuzzy variable (the goal), initial values of input fuzzy variables, and a list of N fuzzy rules,15
some of which were goal rules (those that set the value of the output variable). Also, test knowledge
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Fig. 4. Knowledge base size for diJerent kinds of fuzzy rules.

bases were created to support three kinds of inference with fuzzy rules:
1

• sequential fuzzy knowledge bases contained fuzzy rules with one fuzzy proposition,
• disjunctive fuzzy knowledge bases contained fuzzy rules with two or more fuzzy propositions3

linked with the OR operator,
• conjunctive fuzzy knowledge bases contained fuzzy rules with two or more fuzzy propositions5

linked with the AND operator.

We wrote a special-purpose program that automatically generates FES fuzzy rules in test knowl-7
edge bases and so far have compared characteristics of FES knowledge bases against conventional
fuzzy knowledge bases created in Prolog. The tests were run on a PC Windows 2000 system, with9
800 MHz Pentium II processor and 128 MB RAM.

Project size increases linearly with the number of fuzzy rules (Fig. 4), but the knowledge-base11
reading time depends much on the structure of knowledge in the fuzzy knowledge base. Object-
oriented OBOA model of fuzzy knowledge bases results in tree-like knowledge structures, which13
is easier to manipulate and read. The time required to read the knowledge base developed us-
ing conventional models typically increases exponentially with the increase of the number of rules15
(Fig. 5). FES/OBOA is notably superior over conventional models in terms of inference time, which
increases linearly in FES up to about 5000 inference cycles (Fig. 6). Inference time becomes expo-17
nential with further increase of inference cycles because the impact of operating system and hardware
performance becomes more evident.19

An important OBOA component built into FES is the inference optimizer that reduces the number
of rules supplied to the inference engine to perform the inference process, thus considerably reducing21
the inference time. From the list of all rules in the knowledge base, the inference optimizer selects
only those that match the initial values of input fuzzy variables, goal rules, and those needed to23
carry out that particular inference process—typically 10–15% of all rules. The optimizer also converts
disjunctive rules into sets of new equivalent rules.25
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5. Application example1

As a practical example of how our model and the FES tool are used for developing fuzzy expert
systems, we show the system we developed for determining the severity of respiratory distress of a3
patient in an intensive care unit, called Acute Respiratory Distress Syndrome (ARDS).

The lung abnormalities in ARDS are due to diJuse acute lung injury. The lung injury is manifested5
by several clinical 7ndings, making up the clinical syndrome, which includes: obvious respiratory
distress with tachypnea, severe hypoxernia with intrapulmonary shunting (the arterial oxygen pressure7
decreased, alveolar-arterial oxygen tension diJerence increased) and diJuse bilateral lung in7ltrates
on the chest radiograph.9
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Table 3
Decision-making parameters for ARDS

Phase Breathing RTo PaO2 PaCO2 A-aDO2

N — — 80–100 35–45 5–10

I Normal No changes 70–90 30–40 20–40

II Mild to Minimal in7ltrates 60–80 25–35 30–50
moderate
tachypnea

III Increasing ConNuence of 50–60 20–35 40–60
tachypnea in7ltrates

IV Obvious Generalized 35–55 40–55 50–80
respiratory in7ltrates
failure

ARDS usually develops rapidly and high mortality is still associated with it, in spite of medical1
technological advance [19]. Hence, detecting ARDS early is of extreme clinical relevance.

Widely used criteria for the early diagnosis of ARDS include:
3

• clinical aspects of breathing (Breathing),
• chest radiograph (R&o),5
• the arterial partial tension of oxygen (PaO2, mmHg),
• the arterial partial tension of carbondioxide (PaCO2, mmHg),7
• alveolar-arterial oxygen tension diJerence (A-aDO2, mmHg).

The progression of changes through phases of ARDS is shown in Table 3. The meanings of9
symbols in the “Phase” column are:

• N—normal condition of the patient,11
• I—the 7rst (the easiest) phase of the respiratory distress (injury and resuscitation),
• II—the second phase of the respiratory distress (subclinical),13
• III—the third phase (established respiratory distress), and
• IV—the fourth (the hardest) phase of the distress (severe respiratory failure).15

In our design, this medical diagnosis problem is modeled as a fuzzy multicriteria decision-making
problem. The patient’s condition is described by a set of symptoms given by numerical values from17
approximate intervals and by linguistically described features. Fuzzy sets needed for determining the
severity of a respiratory distress are modeled using trapezoidal membership functions.19

The features Breathing and RTo are expressed by linguistic terms. The other features are charac-
terized by approximate numerical intervals of values. They can be interpreted as fuzzy sets of the21
type “x is approximately in the interval [b; c]”, i.e. they can be characterized by ordered quadruple
A= (a; b; c; d), a fuzzy trapezoidal number. Such quadruples, i.e. characteristic values of the crite-23
ria for determining severity of respiratory distress, shown in Table 3, are represented in Table 4.
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Table 4
Fuzzy decision parameters for ARDS

Phase Breathing RTo PaO2 PaCO2 A-aDO2

N — — (70, 80, 100, 110) (30, 35, 45, 50) (0, 5, 10, 15)

I Normal No changes (50, 70, 90, 110) (25, 30, 40, 45) (10, 20, 40, 50)

II Mild to Minimal (40, 60, 80, 100) (20, 25, 35, 40) (20, 30, 50, 60)
moderate in7ltrates
tachypnea

III Increasing ConNuence of (40, 50, 60, 70) (10, 20, 35, 45) (30, 40, 60, 70)
tachypnea in7ltrates

IV Obvious Generalized (30, 35, 55, 60) (30, 40, 55, 65) (40, 50, 80, 90)
respiratory in7ltrates
failure

PaCO 2 

NormalDistress I 
degree 

Distress 
II degree

Distress III 
degree 

Fuzzy variable Fuzzy sets 

0       10         20        25      30        35        40        45       50     55      60        65

1

va
lu

e 

Distress
IV degree

Fig. 7. Fuzzy sets of the fuzzy variable Arterial partial tension of CO2.

For example, the value of the feature PaCO2 for normal condition of the patient is approximately in1
the interval (80, 100); that can be represented by the fuzzy interval (70, 80, 100, 110). This repre-
sentation enables the membership degree calculations for each real value of the numerical symptom,3
in all possible intervals. Membership degrees are taken from the physicians’ experience, and as
far as the syndrome is considered all the features have the same importance. The maximal degree5
by which the patient’s condition ful7ls all the criteria (the features) for the phase is needed, so
Bellman-Zadeh’s decision-making principle can be applied [30].7

Figs. 7–10 show several design and implementation details of our ARDS fuzzy expert system
and the FES tool. The underlying software components from OBOA libraries that supported using9
concepts from fuzzy set theory in building this system are those mentioned in Section 5. Note that
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Fig. 8. FES tool—de7ning new fuzzy variable.

OBOA libraries largely supported plug-and-play approach to design of FES and ARDS fuzzy expert1
system by providing appropriate GUI components along with those representing concepts from fuzzy
sets theory. Fig. 8 shows an example—a dialog box for de7ning fuzzy variables.3

6. Using the OBOA model in practice

Component software is an object-based software movement that subsumes compound document as5
one example of application interoperability. Component software addresses the general problem of
designing system from application elements that were constructed independently by diJerent devel-7
opers using diJerent languages, tools and computing platforms [26]. The OBOA model also supports
design and development of component-based applications. From the component-based software per-9
spective, it should be noted that many of the classes mentioned in Section 5 are actually developed
as software components as well.11

The OBOA model is supported by a number of design patterns [10] and class libraries developed
in order to support building of intelligent systems. In fact, designing and developing an intelli-13
gent system based on the OBOA model is a matter of 7rst developing a shell and then using
it for development of the system itself. In spite of the fact that this means starting the project15
without a shell, it is a relatively easy design and development process, because of the precisely
de7ned hierarchy among the tools and components, stable and reusable overall layered architecture17
of OBOA-based systems, as well as the strong software engineering support of the design patterns
and class libraries. This is exactly the approach that has been taken in developing our ARDS ap-19
plication. We have started from the OBOA model and its fuzzy elements as speci7ed in Table 2,
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Fig. 9. FES tool-fuzzy rule.

and have designed and developed the corresponding classes and components. Then we used them1
to assemble the FES tool. Finally, FES has been used as the shell for the development of ARDS
system.3

How to use, retrieve and integrate OBOA’s existing “soft” components in order to build up a fuzzy
intelligent application? Software support for building OBOA-based intelligent applications is two-5
fold. First, a number of OBOA’s primitives, units and blocks have been implemented as interoperable
software components and placed in a library of reusable interoperable components. These can be7
used in plug-and-play manner when developing a new system. Section 5 speci7es fuzzy elements that
have been developed in this way so far. Second, a number of other elements have been implemented9
as Java classes and application programming interfaces (APIs). These can be (re)used when building
new applications, but this requires some programming.11

The point is, however, that only the necessary classes and components are retrieved, since OBOA
is a model and a framework rather than an integrated development tool. Development of the OBOA-13
based FES shell for building fuzzy intelligent applications meant putting together only those pieces
of software from the relevant class libraries that were really needed for the ARDS application. If any15
additional class for representing fuzzy concepts was needed, it had to be designed and developed
separately and built into the shell. Fortunately, the class hierarchies and design patterns of OBOA17
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Fig. 10. FES tool—Max-Min inference.

provide a 7rm ground to start from in such an additional development. Most additional subclasses1
for representing fuzzy concepts can be derived directly from some of the already existing classes.
The classes representing fuzzy concepts in the OBOA model are designed in such a way to specify3
“concept families” using the least commitment principle: each class speci7es only the minimum
of attributes and inheritance links. That assures the minimum of constraints for designers of new5
classes.

As an example, consider the task of adding a new fuzzy element when needed. This task does not7
require signi7cant changes in the corresponding module of the fuzzy system or the FES tool. It is
rather a matter of 7nding out an appropriate place for the new class along the levels of abstraction9
and in the class hierarchies representing fuzzy concepts, and specifying a few additional attributes
and links. However, it does require some expertise in fuzzy logic and systems design. The general11
strategy we found useful in that sense stems from the one practiced in orthogonal architectures (see
Section 1): identify the thread of elements along which to put the new one, and then place the new13
element in the highest layer that does not require dependency relationships among its classes and
the new one.15

When developing the FES shell, and then using it for development of an intelligent fuzzy system
like ARDS, the shell’s options were always only the necessary options. Modi7cations and extensions17
are made easily and only in accordance with the application’s needs.
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Looking at the UML diagrams in Figs. 2 and 3, one may think that OBOA-based develop-1
ment of fuzzy and other intelligent systems does not diJer much from any other UML=Java soft-
ware development. Note, however, that these UML diagrams are shown here only because of the3
fact that UML notation is well known and widely used. The point is something else entirely—
the OBOA model provides an ontology and a framework for building intelligent systems [6],5
as well as a set of supporting interoperable software components that allow for plug-and-play
design in at least some parts of the system. OBOA not only de7nes a set of APIs for build-7
ing up “soft” systems such as fuzzy expert systems, neural networks systems, genetic systems—
it provides a stable ontological backbone around which such systems can be9
built.

What does this approach buy us in the context of fuzzy systems modeling=implementation? The11
answer is, in short—plug-and-play approach whenever possible, as well as a 7rm engineering founda-
tion and su5cient software support to proceed with modeling=implementation in a cost-eJective way13
when plug and play is not possible immediately. There is a number of ways to model and implement
a fuzzy system, in terms of 7nding a good compromise of contradicting issues such as development15
eJort, cost, Nexibility, tool support, and source-code ownership and extension. Another very impor-
tant development issue is the “ratio” between two fairly distinct kinds of eJorts needed to build the17
system—that of fuzzy modeling of the application domain and that of providing software support
to actually implement the model. Ideally, a domain analyst and fuzzy modeler can concentrate on19
his=her job and rely on complete software support from the tools he=she uses. That approach re-
quires using tools and=or integrated development environments that may be complex, expensive, and21
di5cult to extend when needed. Moreover, new developments in both fuzzy systems and software
technology always raise the need for frequent and costly change and upgrades of development tools23
and environments. At the other end, developers may opt for providing all the necessary software
support themselves and thus stay up to date with the latest advances in the 7eld and in technol-25
ogy. However, the software engineering part of building a fuzzy system is then considerably higher.
OBOA is somewhere in between the two extremes—it provides a number of pre-built, pre-tested, and27
easily extensible and upgradeable components and libraries, but not a complex shell or a development
environment. It is an ontology-supported stable framework and a collection of easy-to-use compo-29
nents, rather than an integrated software environment that goes through a number of versions over
time.31

7. Related research

The overall OBOA model was developed with the idea of rooting development of intelligent sys-33
tems into well understood and stable principles of software engineering and systems engineering,
such as hierarchical and orthogonal software architectures, object-orientation, interoperability, com-35
ponent hierarchies, reusability, and component cohesion. OBOA is comprehensive in the sense that
it encompasses a number of diJerent intelligent technologies (fuzzy systems, rule-based systems,37
genetic algorithms, neural networks, intelligent agents) and puts all of them into a common context
of intelligent systems. On the other hand, software support for OBOA are libraries of interoperable39
software components and class libraries. All of them are developed through a thorough ontological
analysis of related technologies and concepts.41
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The authors are not aware of other research eJorts that put development of fuzzy systems into a1
comprehensive context of a similar kind. Still, OBOA was developed with some ideas from other
distinct (and diJerent) eJorts in mind. One result of such eJorts is the Common KADS methodology3
for development of knowledge-based systems [20]. In OBOA, we deeply appreciate the Common
KADS’ structured approach to development of knowledge-based systems, as well as its hierarchical5
modeling of task knowledge, i.e. the knowledge of tasks performed in the organization deploying
a knowledge-based system. Another important methodological issue that partially parallels the ap-7
proaches of OBOA and Common KADS is that of ontological analysis of the application domain.
However, OBOA is diJerent from Common KADS in terms of focusing on software architecture9
and reusability in developing intelligent systems, rather than on organizational models and context
or on project management issues, which are extremely important in Common KADS.11

OBOA also strives to provide software components and a framework to support development of
intelligent systems in much the same way in which other research and development groups do in other13
7elds. For example, within the Object Management Group consortium (OMG) the Manufacturing
Domain Task Force (OMG Mfg DTF) has developed a framework and a set of related CORBA15
objects for building manufacturing systems [14]. In Lockheed Martin, as a part of a DARPA-
sponsored project, they have developed a similar set of services and protocols to support concurrent17
engineering processes throughout the product=process lifecycle by enabling the development of virtual
prototypes of products and processes [13].19

There is also some other research regarding diJerent aspects of software engineering and fuzzy
sets. The most comprehensive collection of published material on software engineering and fuzzy21
sets from 1990s can be found in [15]. An early work of Lee [12] shows how to use fuzzy sets to
evaluate risk in software development throughout the software product life cycle. Zeephongsekul and23
Xia [31] applied ideas from fuzzy sets to a speci7c problem of software reliability, that of debugging
of software faults. Software engineering of databases using fuzzy sets techniques has also attracted25
some researchers. An example is a fuzzy generalization of Codd’s relational database model, with
query evaluation using linguistic modi7ers [21].27

More recently, some eJorts in software engineering using concepts from fuzzy sets can be found
in the work of Cross and Firat [4]. They have developed a fuzzy object data model for representing29
knowledge underlying geographical information systems. Their approach is diJerent from OBOA, but
is interesting from the perspective of integrating their fuzzy object data model with commercial, of-31
the-shelf tools—an expert system shell and a commercial object-oriented database system. Similarly,
Slonim and Schneider [24] used fuzzy-valued properties to represent cases in case-based reasoning33
systems. Pedrycz and Sosnowski [16] have studied the design of decision trees using fuzzy sets
and have applied it to quantifying complexity of software systems in the framework of decision35
trees. There is also a fuzzy logic-based approach to identi7cation of potentially error-prone software
components, which an important issue in software inspection [25]. The work of Chen [3] included37
development of a new algorithm to evaluate the rate of aggregative risk in software development
using fuzzy set theory under the fuzzy group decision making environment. Finally, two recent39
approaches of interest for further development of OBOA are described in [11] and [28]. Huang’s
work is important in terms of using fuzzy sets within an intelligent agent framework to carry out41
modular design of products to meet a customer’s fuzzy requirements using modules that come from
suppliers that are geographically separated and operate on diJering computer platforms. He stresses43
the need to consider intelligent agents as software components of a complex system, which roughly
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corresponds to the ideas of Levels 1 and 2 in OBOA (see Fig. 1). Wang and Lin strive to develop1
a multi-criteria group decision making model based on fuzzy set theory to select con7guration items
for software development. Their work is important for OBOA since a similar approach can be used3
in selecting existing OBOA components and classes to con7gure an OBOA-based intelligent system.
However, we still did not use that approach in practice.5

8. Conclusions

Hierarchical design of fuzzy-logic concepts of intelligent systems, presented in the paper, allows7
for easy and natural conceptualization and design of a wide range of intelligent applications, due to
its object-oriented approach. It suggests only general guidelines for developing fuzzy intelligent sys-9
tems, and is open for 7ne-tuning and adaptation to particular applications. Fuzzy intelligent systems
developed using this model are easy to maintain and extend, and are much more reusable than other11
similar systems and tools.

The model is particularly suitable for use by developers of software environments (shells) for13
building fuzzy systems. Starting from a library of classes and interoperable software components for
fuzzy logic concepts and control needed in the majority of fuzzy systems, it is a straightforward15
task to design additional fuzzy logic classes needed for a particular fuzzy system shell. Moreover,
the model also supports development of component-based intelligent systems, which have started to17
attract increasing attention among the researchers in the 7eld.

Further development of support for fuzzy logic concepts in the OBOA model is concentrated on19
development of appropriate classes in order to support a number of diJerent fuzzy systems. The
idea is that the system developer can have the possibility to select fuzzy tools from a prede7ned21
palette, thus adapting the shell to his=her own design preferences. Such a possibility would enable
experimentation with diJerent fuzzy tools and their empirical evaluation.23

As the technology is making progress in abilities to deliver knowledge to the desktops of practicing
clinicians, especially by the World-Wide Web, the universal issues of reconciliation and delivering25
of relevant medical knowledge to practitioners using the Internet technology are getting more and
more important. Then, the Java programming language is the candidate for developing distributed27
intelligent applications available on a variety of computing platforms, in order to enable users to use
the (multimedia) information they have access to. The presented fuzzy model contributes to these29
general developments by enabling distribution of information that is not so well structured.
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