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Abstract. The paper discusses ITS architectures in terms of patterns that exist within them. The concept of
patterns has received surprisingly little attention so far from researchers in the field of ITS. A recent
analysis of a number of existing ITS architectures has revealed that many ITS designers and developers use
their own solutions when faced with design problems that are common to different systems, models, and
paradigms. However, a closer look into such solutions and their comparison often shows that different
solutions and the contexts in which they apply also have much in common, just like the corresponding
problems do. In all such cases we can talk of the existence of patterns. A pattern is a generalized solution
of a typical problem within a typical context. Discovering such patterns can help clarify general guiding
principles of ITS-architectural design in a more systematic way.

Keywords. Intelligent Tutoring Systems, Software Patterns, Software Architecture

INTRODUCTION

What are patterns, speaking architecturally?

The concept of formalising patterns as solutions to typically recurring problems was
introduced by the architect Christopher Alexander and his research group (Alexander et al., 1977;
1979). In their work, patterns were applied in architectural design for urban planning, single
buildings, and detailed room arrangement. This work was adopted successfully in the area of
software system engineering in the 1990s. In software engineering, patterns are attempts to
describe successful solutions to common software problems (Schmidt et al., 1996). Software
patterns reflect common conceptual structures of these solutions, and can be applied over and
over again when analyzing, designing, and developing applications in a particular context.
Patterns help designers capture the core structure of the systems they build and provide a
disciplined format for sharing ideas that too often remained locked in the heads of a few people.



Descriptions of patterns in a clear literary form provide a vehicle to communicate these ideas; the
pattern-oriented mindset of system designers provides a setting in which these ideas can
effectively be gathered and shared.

The big impact patterns had in the last years in the field of software engineering can be
explained by the fact that patterns give general and reusable solutions to specific problems in
software development. Patterns emerge from successful solutions to recurring problems and with
the knowledge of patterns it is not necessary for a software developer to solve every software
problem himself -the developer can benefit from the experience of other software engineers with
similar problems. This is important because software systems tend to grow larger and larger and
the need to keep the systems manageable and extensible is therefore growing as well. Since
intelligent tutoring systems are software systems with great complexity, it is advisable to transfer
general knowledge and trends from the field of software design and architecture, such as that of
software patterns, to the field of ITS. It would make it possible to build ITSs with reduced effort,
or at least make them easier to maintain in the future.

This is not to say that one can talk of patterns in ITS only in the context of ITS architectures.
On the contrary, there are many kinds of patterns in the way learners learn and in the way
teachers teach, and all of them can be used as starting points when designing ITSs. For example,
there are patterns of speech acts that occur in pedagogical interactions (Katz et al., 1999),
patterns in instructional design (Inaba et al., 2001), patterns in teaching strategies (Scott & Reif,
1999), and so on. However, in this paper we do not cover in detail all possible subject areas of
ITS where patterns do exist. The section related work gives pointers and relations to various
types of patterns relevant for ITSs. In this paper we focus on ITS architectures, i.e. software
patterns in ITS design. In the context of ITS architectures, we also don't cover all of them, but
only selected ones -all of the patterns presented are related to common and well-known ITS
concepts, such as collaborative learning, learning companions, and pedagogical agents. This
avoids repeating elaborations of general software patterns that have been previously collected in
textbooks (such as Gamma et al., 1995) and conference series (such as the Pattern Languages of
Programs (PloP) conferences) and concentrates the presentation on ITS- and AIED-relevant
aspects.

The reader should understand that there are several different kinds of general software
patterns; see (Devedzic, 2002) for an extensive discussion on kinds of software patterns. For the
purpose of the following sections, it helps if one can differentiate between design patterns -
common design structures that are useful in creating reusable software (Gamma et al., 1995), and
analysis patterns -reusable models resulting from the process of software analysis applied to
common business problems and application domains (Fowler, 1997). Both kinds apply to
software architectures; the difference exists in terms of perspective and phases of the entire
software development process, as well as in terms of levels of abstraction and details. Design
patterns are more concrete and relate to composition of usually smaller pieces of software into
coherent larger modules when the functionality and behaviour of the larger pieces is specified
beforehand. Analysis patterns are related to identifying specific roles and functionalities of
software modules within a software system as a whole, and to specifying their typical interactions
when they are put together in order to achieve a desired system behaviour. True, this
categorization is not a clear-cut one and can be confusing to non-experts in software engineering.
The reason is that the border between software analysis and software design is not strict either.
Moreover, one should note that many artefacts result from the interwoven software analysis and



design processes. The system architecture is just one of such artefacts. It describes how a
software system is composed from identifiable software components and connectors of various
distinct types. Patterns for software architectures (or architectural patterns (Buschmann et al.,
1996)) can be identified by abstracting from the details of software architectural styles, which are
defined for families of architecturally related software systems (e.g., layered architectures,
pipeline architectures, repositories, etc.).

Some patterns described in this paper can be categorized as design patterns, some other as
analysis patterns of ITS architectures. The respective sections specify the pattern categories
explicitly. Note that there are several widely used ways ("templates") of describing a pattern. One
of them to specify the context where the pattern is useful, the problem that the pattern addresses,
the forces that drive the process of forming a solution, and the solution that resolves those forces
(Fowler, 1997). Specifying the solution often involves showing a diagram, and sometimes the
pattern's variants are also described and pointers to related patterns are given (Gamma et al.,
1995). Most of these "parts" of a pattern are usually shown in the form of simple statements. In
this paper, we extended this template by the pattern category statement. Using such a template
ensures for consistency in describing patterns.

The patterns described in this paper do not imply that they are the only architectural patterns
for the application types (e.g. CSCL or pedagogical agents) which can be identified. They only
represent good examples of patterns that we have discovered.

MOTIVATION

Our motivation for conducting research described in this paper was three-fold. First, we wanted
to provide explicit general guidelines of ITS-architectural design in the context of general
software design. The idea has been to stress the engineering aspect of ITS architectures in terms
of some simple but explicit rules that should govern ITS-architectural design and can lead to
more elegant and more stable architectures. Such architectures exhibit functional clarity and
simplicity of the system's modules, are free from unnecessary details at a given level of
abstraction, enable a high degree of scalability, ensure the system's robustness for exploitation,
need not be modified over a longer period of time during the system maintenance and upgrades,
and are largely reusable.

Second, we have found it very stimulating for further research to view well known learning
theories, teaching strategies, and interaction metaphors from the system design perspective. For
example, if we modify parts of the architecture of a collaborative learning environment, what are
the consequences from the learners' perspective? What architectural modifications should we
make in order to increase their interest in collaboration? Likewise, how do we design a
pedagogical agent in order to make it more convincing as an artificial peer learner? Revealing
common patterns in ITS architectures is a way to:

* shed more light onto existing ITS architectures;

* extract and specify key design elements common to many ITS architectures;
* increase the AIED/ITS community's awareness of the forces that drive design of ITSs;

* provide a more systematic approach to the design of new ITSs.



The third guiding force of our research has been a striving to compile some segments of
well-established knowledge and experience of ITS designers, abstract common ideas, and present
them in the context of already known general software patterns. Although that aspect of our
research is the least represented one in this paper, earlier extensive reports indicate vast research
opportunities in that direction (Devedzic, 2001; 1999a).

WHY USE PATTERNS IN ITS?

The idea of patterns is not new in the AIED/ITS community, but so far it has not been exploited
very much. On the other hand, there's a lot of reasons why it should be. The knowledge of
patterns can provide simple and elegant solutions to specific problems in ITS design. It can also
help in improving the organization of the vocabulary of different learning and teaching styles and
strategies. Patterns have a great potential in generating and structuring explanations, hints,
simulation, and other feedback that students require from an ITS. They could represent the cores
of solutions to analysis, design, architectural, instructional and other problems in ITSs, the
solutions that have been used more than once in different systems. Patterns can capture both the
static and dynamic structure of these solutions in a consistent and easily applied form.

The patterns described in this paper are focused primarily on architectural and structural
issues of ITSs. Therefore, the main use of such patterns lies in their potential to improve the
design of ITSs and to make the development, maintenance, and extension of these systems easier.
The complexity of ITSs makes their development a hard task, hence the use of know-how from
software engineering within ITSs and the explicit elaboration of the know-how implicitly
contained in existing ITSs becomes increasingly important.

What exactly is the benefit of patterns? Why is this work important and timely? Who will
benefit from patterns? "If you build them, they will come" -is it necessarily so?

To answer these questions, recall that although up to now there were some successful ITSs,
they are usually not yet widespread in schools, training centres, at universities, and in other
educational institutions (with the exception of a few broadly disseminated systems, such as the
AlgebraTutor (Koedinger et al., 1997) or the SQL tutor (Mitrovic, 2003)). If we want ITSs to get
really widely used in practice, it is necessary to satisfy a number of conditions. Some of them are
that developers build more and more competitive and useful systems, that at least some of them
get accepted and are really popular with different communities of learners, and that their overall
quality keeps constantly improving. A common denominator of all these conditions is that
developers design, implement, thoroughly test, and periodically evaluate ITSs not only from
pedagogical and educational perspectives, but also following sound rules of software design.
True, one of the most important objectives of developing ITSs is to improve the learning
efficiency in specific domains, and many people might not worry much about architectures and
design of ITSs. However, they are still a kind of system, and somebody still has to build them.
Moreover, being software systems that help learners, teachers, and authors actively participate in
different educational tasks and processes, ITSs should certainly include some advanced software-
design know-how as an engineering support for such pedagogical goals and instructional
processes.

Software patterns are tools that embody parts of software-design know-how. There is a huge
evidence of successful application of patterns in software engineering in different application



domains; see (Buschmann et al., 1996; Gamma et al., 1995; Fowler, 1997; Schmidt et al., 2000),
as well as http://hillside.net/patterns/patterns.html and http://st-www.cs.uiuc.edu/users/patterns/
patterns.html. If applied in building ITSs, patterns can "provide a more systematic approach to
design of new ITS" in much the same way that they did in building various business information
systems, medical systems, or manufacturing systems. It is important, however, to understand that
some software patterns are domain-neutral, whereas others are domain-specific. This paper
focuses on domain-specific ones, i.e. on some ITS-specific patterns.

The AIED/ITS community can benefit from patterns in a number of ways. For example,
being aware of the existence of some specific patterns and with a good understanding of what
good they are, developers can reuse architectures of successful ITSs when building other similar
ITSs. Entire modules of such architectures and even the ways they interact with other modules
can be shared as components if they implement functionalities that are useful in other systems as
well (such as a database of learners, test scores, and structuring of references for further reading,
to name but a few).

PATTERN DISCOVERY

"If patterns are really such nice things, where do I find them?"

Let's make ourselves clear from the very beginning: nobody should invent patterns. They are
rather discovered from experience in building practical systems. Hence the answer to the above
question is either a) ready-to-use software patterns exist only in pattern catalogues and
repositories, where other researchers, designers, and developers have described and categorized
them; or b) "Go discover them yourself!"

Note, however, that although b) is challenging, it is far away from being easy and
straightforward. In the beginning, it is usually a matter of intuition and background knowledge.
In our case, we just had a feeling in the beginning that different ITS architectures hide several
common principles and solutions. What followed was an extensive analysis of organization and
architectures of existing ITSs and their components in search of some possible common design
decisions, common interactions among components, and common generalized principles
underlying superficially different designs. More precisely, we were trying to extract patterns
from numerous known examples, systems, architectures, designs, learning and teaching styles,
strategies, etc. That takes a lot of time and effort, and there are always exceptions to the patterns
that are discovered eventually.

"Is this a pattern or not?"

Suppose we have identified a piece of design that recurs regularly in ITS architectures. Winn
and Calder suggest how to determine whether that piece is a pattern or not (Winn & Calder,
2002). First of all, all patterns are generative -they have a number of concrete (and slightly
different) instances. Also, a pattern is "both a process and a thing", i.e. both a description of a
solution of a common problem in a given context, and a description of the process which will
generate that solution. It implies an artefact, i.e. it describes how the software works and the
relationships it tries to capture. A pattern should express possibility (what decisions could be (or
were) made in a particular context) and feasibility (desirable decisions in a particular context, or
the reasons why they have been made). It must stress both invariant parts of the solution to a
recurring problem, as well as those parts of a solution likely to change as a developed system



evolves (both stable and changing system elements). A pattern is grounded in a domain -
discussion of a pattern has no meaning outside the domain to which it applies. Finally, each
pattern is part of a pattern language -a collection of patterns that "captures" a domain by
identifying its key concepts and their relationships.

There are a number of common pitfalls and difficulties in discovering patterns; they all exist
in discovering ITS patterns as well. Perhaps the most common one is an attempt to discover
something too concrete or too abstract. It is important to understand that a pattern bridges many
levels of abstraction -it is neither just a concrete, designed artefact nor just an abstract
description. Also, trying to identify whether some just discovered pattern has been used in an
existing system should not bring difficulties -if it has, the pattern will be clearly present and
recognizable. Moreover, a piece of design is not a pattern if it fails to pass the "frequency of use"
criterion -the pattern's existence lies in its recurring, identifiable presence in artefacts. Minimum
requirement for a pattern is that it has to be applied successfully more than once (Gamma et al.,
1995) in different systems (preferably of different creators/designers). Other sources give "the
rule of three", i.e. the minimum of 3 occurrences in real systems, to qualify as a pattern. In our
own research, we were constantly trying to see how strong the support is for the patterns we have
discovered in existing ITSs and in on-going projects (how many different architectures use the
pattern, in what part, on what purpose, and the like; see the next section). Note, however, that
there is no strict threshold for the frequency of use -it largely depends on the domain itself and on
the number of systems in that domain that have been developed. It is obvious that the number of
systems considered as sufficient evidence that a certain pattern is used must be larger in, say, the
domain of business information systems than in the domain of ITS. Not even the relative
numbers (i.e., the percentage) are of much help, because domains are inherently different and
also the evidence usually changes as new systems are developed. To prove the qualification as a
pattern, experts in software patterns recommend accurately maintaining and referencing each
piece of evidence/recurrence of discovered patterns.

Last but not least -patterns are not about solutions to trivial problems, so not every solution
to a software design problem warrants a pattern (Winn & Calder, 2002). This is not to say that all
patterns necessarily have complex structures -on the contrary, there are software patterns that
have a very simple structure (Fowler, 1997).

Our experience shows that most ITS-architectural patterns focus on key aspects of software
design of these systems, aspects that designers in that area face time after time, again and again,
in one form or another. These aspects, in turn, stem from continuous efforts to architecturally
support important instructional design and cognitive issues.

METHODOLOGY

In the course of discovering the patterns described below, we have analyzed different ITS
architectures that have been described in a number of AIED- and ITS-relevant journals and
conference and workshop proceedings since 1997. We also consulted a number of designers and
developers of specific systems, asking them for clarifications and detailed documentation of the
architectures they developed (thus our elaboration is more detailed for the time period from
1997-2002, because additional information could be gained in direct exchange with the
developers for a longer period; nevertheless we found evidence of characteristic concepts and



systems in recent work for each presented pattern, too). We are perfectly aware of the fact that
we might have missed some other important work on ITS architectures, especially since only a
few articles in this community directly address architectural aspects.

However, we have tried to maintain some simple statistics related to the patterns we have
discovered and the sources we have used. For all the patterns we have discovered, we counted
support (how many different architectures use the pattern, in what part, on what purpose, and the
like). We have excluded the systems and the papers that we ourselves have authored/co-authored,
due to the possibility of some bias in the analysis. We have also excluded the systems if they
were architecturally much akin the earlier versions of the same systems, as well as the relevant
papers/documentation if their contents largely resembled some other publications of the same
author(s) that we have already analyzed. The relevant numbers are shown in Table 1. Note that
they may increase in the future, as new support may be collected for the patterns discovered. The
table shows the numbers only for the patterns that we have discovered so far. Other patterns exist
as well, and their discovery is the subject of our on-going work.

Table 1
Statistics about the ITS-architectural patterns discovered so far

Total number of patterns discovered, at all levels of abstraction 12
Total number of papers analyzed 96
Total number of other relevant sources analyzed 13
(e.g., system documentation, interviews with the system architects, implementation

details)

Total number of ITSs found to support some of the patterns that have been discovered 63
(the system status -prototype, tested, used in practice, etc. -was excluded from the

analysis)

Number of ITSs that use individual patterns 5-12
(again, the system status -prototype, tested, used in practice, etc. -was excluded from the
analysis)

Knowledge of more general software patterns has been very useful in the process of
discovering ITS-related patterns. Some patterns that we have discovered can be seen as close
relatives of some more general design patterns, patterns for software architectures, or analysis
patterns. This is inevitable -software patterns are plentiful, and it is hard to discover something
completely new in the architectures of systems developed in some specific domain, such as
ITS/AIED. However, we have tried as much as possible to concentrate on ITS-specific
architectural issues and stay as much away as possible from general software patterns. Hence all
the patterns we have discovered are at least to an extent specific to ITS architectures, and for
each one of them we have also recorded what general software patterns are related to it.

CLASSIC ITS ARCHITECTURE

The first pattern we describe here should look familiar to most of the readers. However, it is
presented here using the template described in the Introduction. It should allow the reader to get



used to the template, since all the other patterns presented in the subsequent sections use the same
template for consistency.

Name. Classic ITS architecture.

Category. Analysis pattern.

Context. Specification of typical competences that an ITS provides.

Problem. Define ITS modules and their functionalities according to the competences the ITS
provides.

Forces. The modules should reflect the ITS domain and pedagogical expertise, as well as its
capabilities of driving the learning session and interacting with the student in a personalized way.
Solution. In the classic ITS architecture, Figure 1 (Wenger, 1987), functionalities of its modules
are defined according to the competences the ITS provides:

* the Expert Module represents the domain competence of the ITS, that is the ability to
solve problems within the domain;

* the Student Module contains the diagnostic competence of the ITS and generates the
student model with all information about the individual learner;

* the Tutor Module is responsible for the instructional competence; this module provides
implementations of different tutoring strategies;

* the Communication Module implements the human-computer-interface of the ITS. To
enable the user to interact with the ITS this component has to represent some knowledge
about how to interact, that is communication competence.

These modules interact with each other in many ways: the Tutor Module chooses a proper
learning task based on information from the Student Module; the Communication Module

presents the task and converts user input to a format that can be processed further by the Expert
Module, which tries to make a diagnosis of the student’s problem solving behaviour. This
diagnosis is used for an update of the Student Module and so on.

R ¢ Student

Communication
Module

Tutor Student
Module Module

Expert Module

Fig. 1. Classic ITS architecture (system border in dotted lines).

Diagram. See Figure 1. This competence-oriented decomposition of ITSs is presented in detail in
(Wenger, 1987).



Variants. Even though there were other reference architectures presented in recent years (which
we present later), this Classic ITS Architecture pattern is still very popular and can be found both
in many traditional ITSs and in various recent ones, such as SYPROS (Harrer & Herzog, 1999),
SQL tutor (Mitrovic, 2003) and SlideTutor (Crowley et al., 2003). Its importance is also
recognized by the IEEE Learning Technology Standards Committee, which proposes a very
similar structure for learning systems in its architecture specification draft (Farance & Tonkel,
2001). Their four main components, called processes, have functionalities corresponding to those
of the ITS-modules -the components are Evaluation (Expert Module), Learner Entity (Student
Module), Coach (Tutor Module), and Delivery (Communication Module).

In order to illustrate how this pattern has evolved in numerous ways over the years and how
it is still replicated in recent projects, Figure 2 shows an example. It represents the architecture of
the Code Tutor ITS, which is developed to help the students learn the basics of radio-
communications and is actively used in practice since 2002 (Shimic & Devedzic, 2003). Note
that in addition to the "instantiations" of traditional modules -Student model, Tutor, Expert
module, GUI -this architecture also includes several modules necessary to enable the use of Code
Tutor in Web classrooms -Web server, Serviet engine , Session monitor. Moreover, the figure also
indicates the use of different GUIs for the teacher and the students, as well as an embedded
expert system component in the Expert module.

Student model
Personal
data
B Marks &
scores
GUI (WEB browser) .
Log file
| GUI (WEB browser
Observe Session monitor ( )

Edit KB Authentication

F

Teacher > Tutor [ )
4—p Authentication g _ Learning Student
—M Assessment [4—

| |
Start server  jg—]| Expert module | | Servlet engine
Domain | (ApacheJServ)

knowledge Recommendation
(CLIPS) | erviets
Reasoning I

machine
WEB server
(Jess) (Apache)

Validation

Stop server  |jd—

Statical
HTML -
pages

{lessons)

¥ __

Fig. 2. Architecture of the Code Tutor system (components and collaborations).

Related patterns. Patterns for distributed ITS architectures and for Web-based ITS architectures.



KNOWLEDGEMODEL-VIEW ARCHITECTURE

Name. KnowledgeModel-View.

Category. Design pattern.

Context. Reference architecture for ITSs.

Problem. Find a general architecture for ITSs that takes into account different variants of the
classic ITS architecture.

Forces. In recent years there were several proposals for reference architecture of ITS other than
that described by the Classic ITS architecture pattern.

Solution. In our efforts of "pattern mining" or pattern discovery, we found an architectural
pattern for ITSs that generalizes two proposals for reference architecture for ITSs, the
"integration-oriented" architecture from Peter Brusilovsky (Brusilovsky, 1995) and an alternative
proposal from Meike Gonschorek (Gonschorek, 1998). An exhaustive analysis has shown that a
large number of current ITSs (such as in (Brusilovsky 2003)) can be seen as instances of this
pattern. KnowledgeModel-View means that the architecture has distinct components for a) all
kinds of knowledge models within an ITS, and b) components for presentation of information for
the user and interaction between user and system (these can be called views). Views are updated
when the content of a knowledge model changes, so we have a typical interaction protocol
between models and views, which is called "Publish-Subscribe" (Gamma et al., 1995). So the
basic structure of this ITS-pattern is very similar to the general software engineering pattern
"Document-View" (Buschmann et al., 1996), consisting of one central document that contains all
the relevant knowledge/data, and several views, which are updated every time the document
changes. The difference is that in the ITS-context we may have multiple sources of knowledge
(student model, expert model, tutoring rules) and therefore not a /:n relation but a m.n relation
between models and views.

Diagram. The typical structure diagram for this pattern is shown in Figure 3.

Knowledge Madel -Corresponding Viess Winw
+callUipdaba]] +updaled)
ik 4 T
TN Pl .
forall v in comesponding Views |
1 W g e |
Canerats K nowladgeMacall CancratalnswladgeMadald Conratel e CancrataViaw?

Fig. 3. UML class diagram of KnowledgeModel-View pattern.
(* indicates any number of class instances)

Variants. As we already mentioned, this pattern generalizes two architectures proposed in the
literature. In (Brusilovsky, 1995) the "student-model-centered" architecture consists of a central
student model (that is one knowledge model of our pattern), agents and their knowledge, and so



called "tools with interfaces" that enable the interaction with the learner (these are the views).
Both agents and tools use a projection of the student data that is created by "projectors". The
projectors can either be considered part of the central student model (our pure pattern) or as
components that provide a Pipes-and-Filters pattern (Buschmann et al., 1996) between model and
views (in contrast to the usual pipes and filters which is unidirectional this one is bi-directional,
i.e. data flow from model to tool or the other way round). Figure 4 sketches this architecture:

Tool Tool Tool
niteface infarimos
Central Projection
Student Lol
Madel
/ Projector
Agent
Agent
kncriadge knowiedge 1
Central
tﬁgﬁﬂi Student
Model

Fig. 4. Student-model-centered architecture (according to (Brusilovsky, 1995)).

The "integration-oriented" architecture in (Gonschorek, 1998) stresses the decomposition of
components in ITSs into a knowledge module (which consists of several different knowledge
models), presentation components (views for the representation of information for the user,
which just present but do not process user input), and a control module that defines the reactive
part of an ITS, uses information from the knowledge module, initiates system actions and
changes to the knowledge bases. In interactive systems the control module is called controller,
and the whole architecture Model-View-Controller architecture (Buschmann et al., 1996). So the
integration-oriented architecture is an architecture in a model-view-controller-like style that is
specifically tailored to ITSs with several knowledge models. The detailed architecture can be
seen in Figure 5.

Related patterns. We call this general pattern for ITS architectures "KnowledgeModel-
View" pattern as a reference to the general architectural patterns "Model-View-Controller" and
"Document-View" (Buschmann et al., 1996), because there are some similarities between these
general architectural patterns and the KnowledgeModel-View pattern. The Model-View-
Controller pattern in relation to collaborative learning systems is also discussed in (Suthers,
2001).
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Fig. 5. Integration-oriented architecture (according to (Gonschorek, 1998)).

PATTERNS FOR COLLABORATIVE LEARNING SYSTEMS

Name. ICSCL student model.

Category. Design pattern.

Context. Student modelling in Computer Supported Collaborative Learning (CSCL) systems.
Problem. Design a suitable model to enable representing both an individual learner as a
participant to a group of learners in collaborative learning situations, and the group of learners as
a whole.



Forces. CSCL systems enable different distributed learners to learn together. CSCL systems that
try to support the resulting learning communities intelligently (ICSCL) with techniques used in
ITSs for single learners, such as adapting the learning material to the needs of the groups or
specific members, have to model the group as well as the individual learner.
Solution. The raw material for student and group modelling can be found on different levels:

* domain level, where all the problem solving activities take place;

* conversational level, where the cooperation, division of labour, and discussion of the
learning community takes place.

For each level an ITS may provide several editors accepting user input and creating raw
data. The generated raw data is task-focused action at the domain level, while the raw data at the
conversational level is coordination-oriented interaction information (mechanisms to trace the
interaction in ICSCL are often based on dialogue games or patterns of social interaction
represented as conversational networks (Harrer, 2001)).

The raw data (domain level actions, speech acts...) can be transformed into more abstract
learner model information (such as mastery of a specific learning goal or participation of one
learner within a community), which again can be separated into two distinct types of models:

* individual learner models that contain all the data relevant to one specific learner

(knowledge state, motivational traits, learner type);

* group models that contain all the data relevant for the learning community
(complementary and conflicting knowledge, specific roles within the community,
relations between the members).

The transformation of raw data into the learner model contents can be done "on the fly" (that
is just when the raw data is generated) or at discrete points of time (such as the end of a group
learning session).

Diagram. If we want to consider all of these aspects in the structure of the student modelling
subsystem and to provide a flexible and easily extendable interface, we get a design like the one
in Figure 6.

Variants. /CSCL student model pattern is inspired by the ideas of Ana Paiva (Paiva, 1997) and
systems akin to Intelligent Distributed Learning Environments (IDLE) presented in (Harrer,
2000). Recently the interrelations of individual and group model information have been discussed
in (Winter & McCalla, 2003).

Related patterns. The design presented in Figure 6 contains some class hierarchies which are
structurally similar. For each level of user action (domain level and conversational level) we have
editors and raw data, for each type of learner model (individual and group model) there are the
models and the contained learner model contents. The hierarchies are connected via the class
hierarchy of raw data processors. This design resembles the Abstract Factory design pattern
(between the upper two hierarchies), as well as the Factory Method design pattern (processor and
content hierarchies) (Gamma et al., 1995). The structure can be easily extended when additional
editors or processing components are brought into the system.
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Fig. 6. UML class diagram of ICSCL student modeling pattern.
(* indicates any number of class instances)

PEDAGOGICAL AGENTS AND SOFTWARE PATTERNS

Over the last several years there has been significant interest in the ITS research community for
applying intelligent agents in design and deployment of ITSs. The focus has been on pedagogical
agents, i.e. autonomous agents that support human learning by interacting with students in the
context of interactive learning environments (Johnson et al., 2000). Pedagogical agents monitor
the dynamic state of the learning environment, watching for learning opportunities as they arise.
They can support both collaborative and individualized learning, because multiple students and
agents can interact in a shared environment. Pedagogical agents can provide numerous
instructional interactions with students, promote student motivation and engagement, and
effectively support students' cognitive processes. Some of them are represented by animated
characters (Rickel, 1999) that give the learner an impression of being lifelike and believable,
producing behaviour that seems natural and appropriate for the role of a virtual instructor or
guide. In distributed learning environments, multiple pedagogical agents can collaborate in
different ways to help students in various learning activities.



We have analyzed a number of pedagogical agents described in the ITS literature, as well as
some of them whose demos are available on the Web. The idea has been to see to what extent
people designing pedagogical agents and multiagent systems use patterns (implicitly) in their
design. The two patterns shown here are related to the design of individual agents only. Note,
however, that patterns exist also in different designs of multiagent educational systems.

Name. Generalized Pedagogical Agent (GPA).

Category. Analysis pattern.

Context. Internal structure of pedagogical agents, such as modules and data/information flows.
Does the structure reflect the role of the pedagogical agent and how?

Problem. Given the fact that pedagogical agents in ITSs can play different roles (learners,
teachers, companions, assistants, and so on) in different educational settings, abstract the general
structure and show how such a generalization supports the different roles.

Forces. Recognizing the essential functions of specific modules in the architecture of a certain
pedagogical agent can be difficult because of a number of applications of pedagogical agents and
abundant design specifics.

Solution. We have found that numerous designers of pedagogical agents essentially follow the
pattern shown in Figure 7, which we call General Pedagogical Agent pattern, or GPA pattern.
The name comes from the fact that the pattern has been abstracted out of a number of agents
playing different roles in different educational settings (see above), yet having much in common.
Boxes and data/knowledge flows represented by solid lines have been identified (under various
names) in all the agents we have analyzed. Those represented by dashed lines have been found in
a number of agents, but not in all of them.

The first mandatory participant in the GPA pattern is Knowledge Base that can include
domain knowledge, pedagogical (instructional, tutoring) knowledge/strategies, and student
model. Some of the examples include the Learning Tutor agent (Hamburger & Tecuci, 1998),
Disciple agents (Tecuci & Keeling, 1999), pedagogical actors (Frasson et al., 1997; Frasson et
al., 1996), animated character agents (Marsella et al., 2003) and so on. Only in the design of
Disciple agents the Knowledge Base Manager is shown explicitly, although textual descriptions
of most of other pedagogical agents also indicate its presence. Knowledge Base Manager helps
the other participants use and update all kinds of knowledge stored in Knowledge Base.

Each pedagogical agent also has some kind of Problem Solver (i.e. Logic, or Reasoning
Engine) that can include inferencing, case-based reasoning, and other tasks normally associated
with learning and teaching activities. For example, Learning Tutor agent has both a tutoring
engine and an inference engine (Hamburger & Tecuci, 1998). The problem solver of pedagogical
actors is essentially a control module and a decision maker that decides on whether the actor
should take an action, how to do it, on what stimulus it should react, and the like (Frasson et al.,
1997). Teachable Agent developed by Brophy et al. has explanation and simulation generators in
the problem solving component (Brophy et al., 1999).

The Communication (Interface) participant is responsible for perceiving the dynamic
learning environment and acting upon it. Typically, perceptions include recognizing situations in
which the pedagogical agent can intervene, such as specific student's actions, co-learner's
progress, and availability of desired information. Examples of typical actions are "display a

message", "show a hint", and "update progress indicator".
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Fig. 7. The GPA pattern (dashed lines show optional elements, shaded boxes components with highly
variant specifications).

State is a general abstraction for many different kinds of states a pedagogical agent can be
made "aware of", as well as both volatile and persistent factors that influence the states. It can
refer to the agent's expression, expressiveness, emotions, and personality, as in the Classroom
Agent Model (Yin et al., 1998). It can also represent the agent's different mental states and verbal
behaviour, as in the case of Vincent, the pedagogical agent for on-the-job training (Paiva &
Machado, 1998). Furthermore, State can contain current values of parameters of the agent's
relationships with other agents -the relationships that the agent is able to create, reason about, and
destroy, all according to its goals. This is the case of Social Autonomous Agents (Vassileva,
1998). Teachable Agent's state includes its disposition, or learning attitude, which may for
example determine whether the agent will learn by picking a quick, reasonable solution, or will
rather spend more time in order to come to a precise solution (Brophy et al., 1999).

Occasional participants in the GPA pattern include Knowledge Acquisitioner and Behavior
Engine. Knowledge Acquisitioner reflects the fact that apart from reactive, reasoning, and
decision-making capabilities, cognitive pedagogical agents also possess a learning capability that
makes possible for the agent to update and modify its knowledge over time, using some machine
learning technique(s). For example, the Learning Tutor and Disciple agents include a machine
learning and knowledge acquisition component explicitly (Hamburger & Tecuci, 1998), (Tecuci
& Keeling, 1999). The cognitive layer of pedagogical actors provides them with self-
improvement capabilities based on the analysis of the student's performance in different learning
situations and machine learning techniques (Frasson et al., 1997; Frasson et al., 1996).
Essentially, it categorizes different learners using conceptual clustering techniques and builds a
case base of situations. Self-improvement is done by using case-based reasoning to adapt the
situation to a new case. In a similar way, cognitive agents can provide adaptivity and flexibility
in learning in terms of autonomously establishing learning objectives, and creating, locating,



tracking, and reviewing learning materials, such as diagnostic instruments, scenarios, learning
modules, assessment instruments, mastery tests, etc. (Canut et al., 1999).

If present in the design of a pedagogical agent, Behavior Engine (Expression Engine) is
responsible for analysis of the agent's current internal state and possible modifications of (parts
of) that state. In general, Behavior Engine depends on the current perception of the agent's
environment supplied by the Communication module, the current State, and possibly on some
heuristics specified in the Knowledge Base. Its output is changes in the current State that are then
converted into appropriate actions by the action part of the agent's Communication module.
Frequently used instances of Behavior Engine include Emotion generator and Behavior generator
such as those included in the Classroom Agent Model (Yin et al., 1998), Emotive Behavior
Sequencing Engine of lifelike pedagogical agents (Lester et al., 1999), physical behavior
generator (i.e., layout handler, or the "Body") and dialog handler such as those of Vincent (Paiva
& Machado, 1998), and social behavior generator in pedagogical agents participating in
multiagent systems (Vassileva, 1998). This last instance of Behavior Engine is always used for
pedagogical agents participating in collaborative learning and collective decision-making
processes.

Diagram. See Figure 7.

Variants. As an illustration of how GPA is used in practical agent design, consider the
Classroom Agent Model (Yin et al., 1998), shown in Figure 8. Classroom Agents represent
students in a classroom, each one having its own personalities and emotions (Personality and
Emotion are, in fact, instances of State). Learning is the word that the Classroom Agents Model
authors use to denote all kinds of problem solving activities associated with learning situations
(an instance of Problem Solver). In these agents, the Behavior Engine is split into two distinct
parts, one to generate the agent's emotions (Emotion Generator), and another one (Behavior
Generator) to formulate the agent's learning actions and pass them to the effector (the Action part
of the Communication module). The idea is that for a learning agent perceiving an event that
motivates it (e.g., an easy exercise) positive emotions will be generated and will promote its
learning (and vice versa), which will certainly be reflected in Behavior Generator when
formulating the agent's next actions. Behavior Engine is optional in the GPA pattern (dashed line
for the corresponding box in Figure 7), but certainly does appear in the Classroom Agent Model
(solid lines for Emotion Generator and Behavior Generator in Figure 8).

We have also identified several other variants of the GPA pattern. For example, the
pedagogical agent of the Adele system downloads its case task plan and an initial state, as well as
a student model, from the server, and only the reasoning engine and animated persona are on the
client side (Shaw et al., 1999). Another variant can be seen in Vincent, where problem solving is
done in the agent's Mind component (Paiva & Machado, 1998). Vincent's Mind is a combination
of a knowledge handler and a dialog handler -a kind of a mixture of functionalities of Problem
Solver and Behavior Engine.

Related patterns. Further abstraction of GPA-based agents can lead to the conclusion that they
are essentially instances of reflex agents with states, goal-based agents, and knowledge-based
agents, as higher-level abstractions of all intelligent agents (Russell & Norvig, 1995). Such a
conclusion would be true -State corresponds to the agent's internal state in all these higher-level
abstractions, Problem Solver, Knowledge Acquisitioner, and Behavior Engine reflect the agent's
general ability to make inferences, decisions, and updates of its knowledge, and so on. However,
going that far would take us completely out of the scope of ITSs to much more general Al



problems. That would, in turn, mean loosing the sense of context where the pattern applies -
remember, a pattern is a generalized solution of a typical problem within a typical context.
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Fig. 8. An example of using the GPA pattern in the Classroom Agent Model (after (Yin et al., 1998)).

CO-LEARNER PATTERN

Name. Co-Learner.

Category. Analysis pattern.

Context. Introducing an artificial learner (a program) acting as a peer in an ITS has proven to
have a number of positive effects on the learner. It ensures the availability of a collaborator and
encourages the student to learn collaboratively, to reflect on and articulate his past actions, and to

discuss his future intentions and their consequences (Goodman et al., 1998). Artificial learners
can take different roles, such as:
* Jearning companion (Chan & Baskin, 1988), which learns to perform the same learning
task as the student, at about the same level, and can exchange ideas with the student
when presented with the same learning material;

* troublemaker (Aimeur & Frasson, 1996), which tries to disturb the student by proposing
solutions that are at times correct, but are wrong at other times, thus challenging the
student's self-confidence in learning;

* several reciprocal tutoring roles, as described in (Chan & Chou, 1997).

* roles that aim to stimulate collaboration and discussion within learning communities,
such as observer (Dillenbourg et al., 1997), diagnostician or mediator (Harrer, 2000).

Problem. Characterize the functions, interactions, and dataflows typical for artificial learners,
regardless of the roles they may take.



Forces. In all the cases described in the Context section we can talk about a distinct learning
paradigm that often goes under different names -learning companion systems, co-learner
systems, simulated students, and so on. We prefer the term co-learner. It is important to note that
architecturally, all ITSs involving a co-learner have much in common regardless of the role the
co-learner takes.

Solution. The Co-Learner pattern, reflecting the learning paradigm just mentioned, is shown in
Figure 9. The classic 3-agents triad -Tutor-Student- Co-Learner -is shown in Figure 9a with more
details than the literature on co-learners usually offers, due to the fact that all pattern diagrams
have to show both the participants and their communication paths clearly. Hence that part of the
figure stresses the "who communicates with whom" and "what knowledge and data are involved"
issues. Moreover, since this is an architectural view, it is necessary to show details more-or-less
irrelevant for instructional aspects of co-learner systems. For example, the System component
acts as a supervisor and performs all the control and scheduling of activities of the three major
agents. It is shown in grey, though, since it doesn't contribute essentially to the major knowledge
and information flows. Furthermore, Figure 9a clearly indicates what kinds of knowledge and
data each agent needs. Put this way, it turns out that the Co-Learner pattern belongs, in fact, to
blackboard architectures (Buschmann et al., 1996) -Wang and Chan note that explicitly (Wang
& Chan, 2000). All knowledge and data are on the blackboard, but usually only the 7Tufor agent
accesses all of them. Student and Co-Learner normally have access only to the Learning Task
part of the blackboard (thick data-flow lines). Variants are discussed in a later paragraph (dashed
data-flow lines).

If 7, S, and C denote the Tutor, Student, and Co-Learner agents, then their communication

in the Co-Learner pattern, Figure 9a, is as follows:

* T — S -present learning task and materials, explain the format of learning activities,
generate problems, provide guidance, advice and hints, generate examples, evaluate
solutions, generate final justifications of the solution and/or insightful retrospective
comments, negotiate with the student (Chan & Baskin, 1988). Most of this
communication goes through the Learning Task part of the blackboard, while all the
necessary domain knowledge is in the Domain Knowledge part. Tutor can use different

Teaching Strategies, and during the course of the learning task it develops the Student
Model.

* S — T -ask for clarifications & help, present solutions, request directions and references

for future learning. Most of this communication goes through the Learning Task part of
the blackboard.

* T — C -much like T — S for the learning companion role of the Co-Learner agent, but
can vary a lot for other roles. For example, if Co-Learner is a troublemaker, it doesn't get
much instruction or direction from the Tufor. On the contrary, troublemaker usually has
access to Domain Knowledge as much as Tutor. Troublemaker has the level of
competence superior to that of the student, in order to engage him. It is only disguised as
a co-learner, while its role is pedagogically different. However, if Co-Learner is a true
learning companion, it performs the learning task in much the same way as the student
(Chan & Baskin, 1988), and during the course of the learning task 7utor develops the Co-
Learner Model.
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* C — T -usually a highly restricted version of S — T, since the effects of co-learner's
learning are of much less importance than those of student's learning. However, in some
variants of reciprocal tutoring this communication can be much more important and
much more elaborated (Chan & Chou, 1997).

* S — C -observe (watch) the co-learner working on the learning task individually, ask for
assistance, give suggestions when asked, decide on problem-solving strategy, explain
strategy, clarify problem, compare solutions, discover mistakes, correct mistakes (Brophy
et al., 1999), (Chan & Baskin, 1988), (Goodman et al., 1998). Also, in different variants
of reciprocal tutoring, much of T — S and S — T (Chan & Chou, 1997). An important
consequence for system designers follows from that fact -all three major agents can be
derived from the same, more general pedagogical agent, and should have similar
functions (minor differences can be easily implemented using polymorphism).

* C — S -much like S — C for learning companions, but also much like T — C for other
roles. For an excellent survey of co-learners' roles and activities in communication with
human learners, see (Goodman et al., 1998).

Figure 9b shows a fairly generalized version of the Co-Learner agent itself. Functionally, it
is much like GCM (General Companion Modeling) architecture of Chou et al. (Chou et al.,
1999). However, it stresses important details of Co-Learner's internal structure in terms of an
analysis pattern. Note that, in general, Co-Learner can be a "mini-ITS". Depending on the role, it
can have more or less of its own Knowledge, both domain and pedagogical. If Co-Learner has
little knowledge, it is a novice learner; if its knowledge is comparable to Tutor's, it is an expert.
That knowledge can grow over time for teachable agents (Brophy et al., 1999), and in all
reciprocal-tutoring cases when Co-Learner switches the teaching and learning roles with another
agent in the system. For troublemakers, that knowledge can include details of the learning by
disturbing strategy (although it is possible, in principle, to access it on the blackboard as well).
Co-Learner constructs and maintains its own model of the human learner's knowledge and
progress, Student Model ;, which is generally different from the Student Model built by Tutor.
Also, the agent's own internal state (attribute values, learning status, the level of independence,



motivation, personality characteristics, the corresponding animated character (if any)) is stored in
Self. Multiple co-learner systems can have Co-Learner agents with different Self characteristics.
Diagram. See Figure 9.

Variants. In practice, the Co-Learner pattern has many variants. Note, for example, that Student
and Co-Learner can optionally access some parts of the blackboard other than Learning Task (the
dashed lines in Figure 9a). Troublemakers have access to Domain Knowledge (Aimeur &
Frasson, 1996; Frasson et al., 1997), and some authors have studied the benefits of letting the
student access the Student model and the Co-Learner Model as well (e.g., (Beck et al., 1997; Bull
et al., 1999)), an approach called inspectable student models. Also, if Co-Learner is a
troublemaker then the student explains his decisions to the troublemaker in a process controlled
by the Tutor agent directly, and not by the System (Aimeur et al., 1997). The Tutor can even be
omitted from the system, as in teachable agents (Brophy et al. 1999), in the similar "learning by
teaching the learning companion" strategy (Scott & Reif, 1999), and in some other kinds of
reciprocal tutoring (Chan & Chou, 1997). Even group learning can be represented by the Co-
Learner pattern (at least to an extent), by letting the system have multiple learning companions
with different competences and different personas (peer group learning) (Hietala & Niemirepo,
1998). Alternatively, the system can have multiple Tutors with different personas and the student
can learn from them selectively, and Co-Learner can be the personal agent of another human
learner on the network, as in distributed learning (Chan & Baskin, 1988). The Social Intelligence
Project (Johnson et al., 2003) aims at the development of pedagogical agents, that take into
account the affective and motivational state of the learner for the human-agent interaction.
Related patterns. Figure 9b is also an instance of the GPA pattern, Figure 7. Co-Learner's
Knowledge corresponds to Knowledge Base in GPA, while Student Model -; and Self are
instances of GPA's State. Likewise, Co-Learner has a Reasoning Engine (an instance of Problem
Solver), capable of simulating various activities in learning and teaching tasks, depending on the
role Co-Learner plays (see C — S and C — T communication above). In fact, Reasoning Engine
fully corresponds to the Learning task simulation module of GCM architecture, described in
(Chou et al., 1999). Driving Engine (Behavior Engine of GPA pattern and Behavior module of
GCM architecture) is responsible of generating specific behaviour that drives the agent in playing
a specific co-learning role (a learning companion, a peer tutor, and the like). Competence Engine
(Knowledge Acquisitioner in GPA) is Co-Learner's mechanism to increase its competence by
acquiring new knowledge, i.e. to learn and modify contents of its knowledge bases accordingly.
For example, learning companions can employ machine-learning techniques or simulated
knowledge acquisition (controlled externally, by the System, in order to adapt the companion's
competence to the student's current knowledge level) (Chan & Baskin, 1998).

PATTERN LANGUAGES AND ITS

Patterns never exist in isolation -all knowledge and application domains are usually characterized
by a number of patterns. When several related patterns in a given domain are discovered, named,
described, and woven together in a collection, they form a pattern language for that domain
(Schmidt et al., 1996; Schmidt et al., 2000). A pattern language is a network of patterns that call
upon one another. Patterns in a pattern language can be used in combination to create solutions.
The coverage of a domain by a corresponding pattern language can vary; yet each pattern



language reflects a number of important issues in the domain (domain knowledge), thus
providing specialists with vocabularies for talking about specific problems.

So far, there has been only one attempt to formulate a pattern language in the domain of ITS.
A small collection of related ITS-architectural patterns has been discovered and described in
PLAIT, a Pattern Language for Architectures of Intelligent Tutors (Devedzic, 2001). That initial
collection of patterns represents only the core of PLAIT focused on layered ITS architectures.
The language evolves and continues to accumulate new patterns, as they get discovered over
time.

For illustration purposes only, Figure 10 shows topologies of some of the patterns defined in
PLAIT. In describing an architectural pattern topology is not all there is, but is certainly a major
issue in giving an initial idea of what the pattern is about and understanding how it is used in
designing the architecture of practical systems in the domain. Shaded boxes in Figure 10
represent the architectural modules (components) belonging to the patterns themselves, whereas
the other boxes are there to indicate how the patterns fit into the overall architecture (but are not
parts of the patterns). The arrows represent the data flow paths between the components. See
(Devedzic, 2001) for complete and detailed descriptions of the patterns from Figure 10.

The patterns in PLAIT condense parts of ITS-architectural design knowledge of experienced
designers and make it explicit and available to others. In fact, each pattern in PLAIT indicates a
good practice in designing architectures of ITSs, i.e. a practice that has proved sound and
efficient. By reusing these patterns, developers of future ITSs can benefit from previous
experience and create solutions to new problems without "reinventing the wheel". Therefore, the
patterns in PLAIT are a medium that helps the dissemination of best practices within the domain
of ITS architectures.

The lessons learned through development of PLAIT let us better understand what it takes to
develop a full-fledged architectural pattern language for ITSs. A major constraint introduced on
purpose in the initial version on PLAIT -the focus on layered architectures only -has made
PLAIT's initial domain too narrow. Although the patterns described in the initial version are all
useful in their respective design contexts, many other types of ITS architectures were not covered
at all. Also, they were all essentially design patterns, concentrating mainly on lower-level issues
in ITS-architectural design. Hence the patterns in PLAIT's initial collection did not contain a
number of ITS-specific issues. The conclusion we drew was pretty straightforward. First, in spite
of the fact that a narrow domain makes it easier to discover patterns, the domain to focus on in
developing a pattern language should still be large enough as to allow for a wider ITS-
architectural context in which the patterns from the language apply. Moreover, the context should
be more ITS-specific, such as Web-based ITS architectures, or CSCL architectures, to name but a
few. Second, in order to ensure that the language will be more widely accepted, higher-level
architectural issues should also be covered. Hence searching for analysis patterns in ITS
architectures and incorporating them in the language is a must.



Fig. 10. Some patterns from PLAIT (each with the characteristic component(s) shaded)
a) the Inserted Layer pattern b) the Top pattern ¢) the Cascade pattern
d) the T-join pattern e) the Cross pattern.

Important implications of these observations for ITS research in general are as follows.
Good candidate domains for formulating pattern languages are subfields of ITS (CSCL,
pedagogical agents, learner modelling, etc.). Subfield specialists should take care of identifying
patterns in the subfields, naming the patterns, and describing how they relate to each other.
Pattern languages are often visualized in diagrams showing the relations among the patterns
graphically (Coplien & Zhao, 2005). Pattern names in a pattern language should be descriptive
enough to the researchers and developers in the subfield. In other words, there should be no need
for the researchers to read detailed descriptions of the patterns in the language in order to have an
intuitive understanding of what issues the patterns actually cover. After reading a general
description of the pattern language, seeing the diagram that visualizes the language, and knowing
the names of the patterns in the language, researchers in the subfield should be able to tell what a
specific pattern relates to and how to apply it. However, pattern topologies and names are
important only as guidelines and orientation; in practical developments, details are necessary in
order to analyze the design, to apply the patterns, and to consider alternatives. With some
experience over time, the names of the patterns get accepted by the specialists and become parts
of the subfield's overall vocabulary.

DISCUSSION

ITSs are, after all, just another kind of software system, hence their design should conform to
well-established general rules and practices of software design. This is not to say that ITS-
specific features should be neglected in their design -we advocate that it is necessary to integrate
them with general software design issues.

Still, there are a number of system-design issues about patterns that deserve further
elaboration. For example, one might ask about the utfility of patterns. It should be understood that



there is always a positive "feedback" of discovering patterns -they indicate what are concrete and
typical design solutions in building ITSs. Once a pattern is discovered, it can be used at a proper
place in another system/development/application, i.e. for further developments. Patterns also help
in making an explicit and systematic classification of ITS design issues and bridge the gap
between learning theories and experimentation on one side, and practical systems on the other
side. Note, however, that different levels of abstraction of patterns imply different kinds of their
utility. For example, higher-level patterns like GPA help in making more global architectural
decisions, while lower-level ones (such as those that make up the core of PLAIT) can be useful
tools in refining coarse-grained architectures.

Patterns in ITSs can appear at different levels of abstraction, which usually correspond to
different levels of granularity as well. In previous sections we presented patterns related mostly
to general architectural styles of ITSs or of some of their subsystems. Therefore they are called
architectural patterns (Buschmann et al., 1996). But patterns can also be noted at a more
concrete level: design patterns give typical solutions for the structure of subsystems (Gamma et
al., 1995) and typically have only a few classes. The use of one of these patterns (the Composite
pattern) for hierarchical organization of learning material in ITSs is shown in (Devedzic, 1999b).
Sometimes it is difficult to specify the exact levels of abstraction and granularity for a pattern.
While extracting the GPA pattern we found that the granularity of agents differs strongly in some
agent-based ITSs. Some of the systems have agents with a lot of functionality and quite a
complex inner structure (Rickel et al., 1999) while other systems use lots of agents, each with a
very specific function (Chen et al., 1999). Perhaps it indicates that for an exact classification of
patterns in terms of their abstraction and granularity we also need a common vocabulary of the
concepts related to the patterns. That would result in an ontology for the structural elements of
ITS used in patterns (Devedzic, 1999a).

As already mentioned in the section on the methodology we used for discovering the
patterns described here, our knowledge of general software patterns was very useful in the
analysis of ITS-related patterns we have discovered. As a rule, the lower the granularity or scale
of a pattern is (e.g., simple design-level patterns as in (Gamma et al., 1995)), the more general
and the less ITS-specific it is. The larger the granularity of a pattern is (e.g., analysis-level
patterns) and thus the more specific components of an ITS it involves, the more chance that the
patterns discovered will be ITS-specific. Note that both general and ITS-specific ones are useful,
each in their own way (see above). As a good engineering practice, for each ITS-specific pattern
discovered one should document which of the known general software patterns are related to it.
Another good engineering practice suggests that ITS architectures should conform to general-
purpose software patterns for the sake of good system engineering, but that they also must reflect
ITS-specific issues. Some simple patterns may be of both natures, thus serving as links between
the two categories of patterns.

These patterns and also the patterns that can be used perfectly outside the ITS field,
nevertheless should not be neglected when compiling a pattern language. This comes from the
claim for a pattern language to provide a certain "completeness" for the specific domain (Schmidt
et al, 2000). If a general pattern is also useful in the context of ITSs, then it should be included
into the ITS pattern language, because it can be used in combination with other patterns of the
language.

Pattern discovery in software architectures often starts from analyzing and comparing
topologies of different but functionally similar systems. The danger of that approach alone is the



possibility of coming up with too abstract patterns, for which it is hard to see a connection to
real-world systems. Another common pitfall is that a pattern discovered only by topological
analysis of existing systems may merely reflect a common abstract substructure that could not be
called a pattern. In the case of ITS architectures, this is quite possible -the search space is fairly
small (especially if it is constrained to some highly specific architectures), and with relatively
little effort one might find out a common substructure that is unfortunately of little use to
designers because it is too abstract and perhaps lacks more clear semantics. The best way to cope
with these problems is to provide strong evidence of recurrence of such patterns, to clearly
explain both the context in which the newly discovered pattern applies and what are believed to
be the driving forces for the designers who used them, and to document the pattern with "known
uses" (i.e. with the reference to actual systems that have used it). On the other hand, in the
context of ITS architectures we have found the patterns' topology to be very indicative of the
overall design correctness -the more a newly discovered ITS-architectural pattern resembles
general-purpose software patterns, the more stable the ITS architecture that uses it.

However, topology is not everything. Architecturally, it should drive the development
process for the sake of software engineering issues, but may be conceptually insufficient. ITS-
specific issues may add flesh to the skeleton provided by topology (architecture).

Pattern names represent another important issue. For example, should a pattern name reflect
just the pattern's topology, or other issues as well? How does one choose pattern names? How
long should they be? How abstract? Should they better reflect domain metaphors, or should they
reflect the system structure? And so on. The pattern's name conveys the essence of the pattern
succinctly (Gamma et al., 1995). A good name is vital, because it will become a part of analysis
and design vocabularies and will be used in communication between designers. We believe that it
is essential for an ITS-architectural pattern name to be as descriptive as possible, but
simultaneously compact and domain-specific whenever possible. Names of higher-level patterns
should be rooted in domain metaphors, while names of patterns of lower-level, detailed design
may come from the patterns' topology, due to the fact that lower-level patterns are less domain-
specific anyway.

Because the vocabulary in the pattern community is quite young, misunderstandings about
the meaning may arise. Especially since the knowledge transfer from software engineering into
the AIED field has just begun in recent years, ambiguous or even ill defined use of terms can
happen easily when the common vocabulary is not yet established. That can be seen in the very
different granularity of agents in ITSs and also in discussions on whether the term "design
pattern" encompasses also instructional design patterns, or should be used exclusively in the
meaning of patterns of software design.

Patterns are a powerful technique for the design of software systems, because they propose
solutions to typical problems of software engineering. But even if patterns are not used in the
early phases of system development, the knowledge of patterns can help to keep the system easy
to maintain and extend: architectural and design patterns can be introduced into an existing
system's structure with a technique called refactoring (Fowler et al., 1999). This technique uses
small-scale code transformations (such as extracting repeated code into a method, or defining
abstract superclasses to allow polymorphism), that improve the structure of the code and also
preserve the system's behaviour. With several of these refactoring steps, patterns may be
introduced into a system after the system has been implemented. One can even refactor the
system in such a way that it conforms to the interfaces of frameworks that provide concrete



classes, so not all the components have to be developed from scratch. An example for the use of
this technique for educational systems can be found in (Harrer, 2002).

Another interesting question related to ITS architectures and patterns is that of constraints
imposed by ITS authoring tools. When an ITS is developed using an authoring tool, a lot of
flexibility and a number of possibilities are usually offered by the tool in terms of how the user
interface, the domain expertise, the student model, the tutoring model, and the other parts of the
ITS can be authored (Murray, 1999). In all such cases, the resulting system architecture is
constrained by the ITS model(s) the authoring tool supports. A nice extension to authoring tools
might be to make them support several reference architectures, preferably after patterns like
Classic ITS architecture and KnowledgeModel-View. The user could then select a preferred
pattern and get help on advantages and disadvantages of the reference architecture selected and
on possible follow-up patterns to be used in specific parts of the ITS, following the relations
within a pattern language. Likewise, it would be also possible to extend authoring tools in terms
of providing pattern-based development of parts of the ITS (student model, tutoring model, and
so on). An integration of pattern aspects in authoring tools would reduce the gap between
authoring and development environments and give authored ITSs an architecture well prepared
for future extensions and maintenance. However, further research and pattern discovery in all
subfields of ITS is needed before such extensions become viable.

Yet another word of warning about patterns: whenever a new pattern is discovered, it should
be evaluated by other designers and specialists in the field. It is a long and collective work to
agree on a set of patterns in any domain. Such an external evaluation of the patterns described in
this paper is currently underway. A positive feedback has already come from specialists in
software architectural design; we now need feedback from ITS specialists.

RELATED WORK

Pattern-related issues and efforts are subject of a number of recent projects and efforts in the
broad fields of ITS, e-Learning, and education in general. Such kinds of work span different
subject areas. In addition to the work already mentioned in the Introduction (Katz et al., 1999;
Inaba et al., 2001; Scott & Reif, 1999), researchers have already discovered patterns in
educational processes and activities and in general educational design, pedagogical patterns,
instructional design patterns, and learner interaction patterns in collaborative systems. All such
patterns are extremely useful in designing and developing new learning technology and
interactive learning environments.

For example, Centre for User-Oriented IT Design (CID) of the Department of Numerical
Analysis and Computer Science (NADA) at the Royal Institute of Technology, Stockholm,
Sweden (KTH) has published several general educational design patterns and shown instances of
those patterns in present mathematics education (http://kmr.nada.kth.se/cm/edupatterns.html).
Likewise, several instructional design patterns related to content literacy development are
published at http://165.248.178.100/compact/patterns/patterns.html. They cover important issues
of instructional design in the field, such as language development preliteracy readiness,
language-based word recognition, comprehension focus, word recognition focus, meaning-based
word recognition, and direct skills approach to word recognition.



One of the objectives of the e-LEN project (http://www2.tisip.no/E-LEN/) is to maintain a
repository of design patterns for e-Learning. There is already a couple of dozen such patterns in
the repository, divided into four categories: patterns for learning resources and learning
management systems, patterns related to lifelong learning, patterns for collaborative learning, and
patterns in the domain of adaptive learning. Newly discovered patterns can be contributed to the
repository.

The Polnter project (http://www.comp.lancs.ac.uk/computing/research/cseg/projects/
pointer/) is concerned with investigating the appropriateness of patterns as a means of
communicating information about how people interact with each other through and around
technology. The aim of the TELL project (http://elessar.ted.unipi.gr/en/projects/TELL) is to
identify design patterns for effective network-supported collaborative learning. Yet another
important recent initiative is the Pedagogical Patterns Project (http://www.
pedagogicalpatterns.org). This project deals with patterns that are designed to capture expert
knowledge and best practices of teaching and learning in a specific domain. Pedagogical patterns
try to capture expert knowledge of the practice of teaching and learning. The pedagogical
patterns discovered and published by this project consortium describe the essence of the best
practices in a compact form that can be easily communicated to those who need the knowledge,
and represent a pattern language of reusable pedagogical design patterns.

Along with the projects and initiatives, research publications on patterns for ITS and e-
Learning started to pop up here and there. Early work, such as (Devedzic, 1999a; Devedzic,
1999b; Mizoguchi & Bourdeau, 2000), remained rather isolated for a while. More recently,
Frizell and Hiibscher (2002a; 2002b) presented a methodology for supporting the use of patterns
during Web-based instructional design. This methodology consists of a pattern language for
Web-based instruction and a design environment that scaffolds the process of finding, selecting,
and applying patterns to design problems. Rodriguez et al. (2004) have developed a pattern
language with proper support for learning design, relating it to constructs in the current IMS-LD
specification. Hernandez Leo et al. (2004) have also used IMS-LD specification as the basis for
formalizing collaborative learning patterns and generating an appropriate educational modeling
language. Avgeriou et al. (2003) have proposed a pattern language for designing learning
management systems, and Frosch-Wilke (2004) used proven design patterns from object-oriented
software design for modeling different metadata elements of learning objects and their
relationships. Another interesting recent result in the domain of capturing Web-based learning
processes and their subsequent instantiation on learning technology in the form of reusable
patterns is CEWebS, an open Web-service-based learning technology architecture designed for
supporting the implementation of these patterns with conceptual guidance by the layered Blended
Learning Systems Structure (BLESS) model (Derntl & Mangler, 2004).

There is also a working ITS for teaching design patterns frequently used in software
engineering. It is called DP-ITS (Jeremic et al., 2004; Jeremic & Devedzic, 2004). It covers the
patterns from the most authoritative book on design patterns to date (Gamma et al., 1995), and
has a sophisticated student model that accounts not only for the student's performance, but also
for his/her cognitive traits.



CONCLUSIONS

Discovering patterns in [TS-related issues like ITS architectures is not a kind of search for new
modelling and design solutions. It is more like compiling what is already done in practice.
Patterns enable us to see what kind of solutions ITS/AIED researchers and developers typically
apply when faced with common problems. In the future, we expect discovery of many useful
patterns other than those that we have discovered so far. The efforts in describing them in an
appropriate way will follow, finally resulting in accumulation of the patterns in catalogues and
repositories over time. This way the efforts will actually unveil common structures of frequently
arising problems and will help describe and represent the knowledge of their contexts, solutions,
driving forces and trade-offs in the form of explicit statements. Once we have explicitly
represented such knowledge and experience, we can get valuable feedback -we can use the
patterns intentionally and systematically in other systems and applications, i.e. for further
developments. In that sense, AIED/ITS patterns can be understood as many small tools for
modelling and developing ITSs, and AIED/ITS pattern languages, pattern catalogues, and
repositories as the corresponding toolkits.

As a concrete direction for our future research, we intend to study the architectures of
different ITS authoring tools for possible discovery of new patterns. The earlier work of Murray
(1999) indicates that architectures of different ITS authoring tools may have much in common,
i.e. that such architectures may contain a number of recurring structures at different levels (such
as the supported learner model, tutoring model, and the like). In fact, a similar approach has been
successfully taken by Avgeriou et al. (2003) -they were mining for patterns in more than a dozen
different commercial learning management systems such as WebCT, Blackboard, and TopClass.

Many open issues about ITS/AIED patterns still remain and need to be further investigated.
For example, do cognitive processes really work the way the discovered patterns (especially for
GPA-agents) suggest? If so, to what extent? What kinds of interaction patterns exist among
pedagogical agents in multiagent educational systems? Do they exist in the same way among
human tutors, learners, peers, and assistants in different educational settings? In other words,
further research on "cognitive justification" of patterns is necessary. However, we must not forget
the fact that ITSs are a kind of software system; hence well-established practices of software
analysis and design do matter. In that sense, we must recognize that knowledge of patterns lets us
design our systems better.
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