ELSEVIER

Available online at www.sciencedirect.com

science (@hormeer:

Knowledge-Based Systems xxx (2006) XxXX—XXX

Knowledge-Based
— SYSTEMS—

www.elsevier.com/locate/knosys

Petr1 net ontology

Dragan Gasevi¢ 2, Vladan Devedzi¢ >*

School of Interactive Arts and Technology, Simon Fraser University Surrey, 13450 102 Ave., Surrey, BC V3T 5X3, Canada
> FON — School of Business Administration, University of Belgrade, POB 52, Jove Ilica 154, 11000 Belgrade, Serbia and Montenegro

Received 22 April 2004; accepted 16 December 2005

Abstract

The paper presents the Petri net ontology that enables sharing Petri nets on the Semantic Web. Previous work on formal methods for
representing Petri nets mainly defines tool-specific descriptions or formats for model interchange. However, such efforts do not provide a
suitable description for using Petri nets on the Semantic Web. This paper uses the Petri net UML model as a starting point for imple-
menting the ontology. Resulting Petri net models are represented on the Semantic Web using XML-based ontology languages, RDF and
OWL. We implemented a Petri net tool, P3, which can be used as a knowledge acquisition tool based on the Petri net ontology.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Petri nets; Interoperability; Ontology; Semantic Web

1. Introduction

The main idea of this paper is to propose a suitable way
for Petri nets [35] to be used on the Semantic Web, i.e., to
enable full semantic interoperability of Petri net models.
Currently, Petri net interoperability is possible at the level
of syntax for model sharing. It was first introduced in [3],
where the authors said that it would be very useful if Petri
net researchers could share their Petri net model descrip-
tions. That way more software tools could be used for ana-
lyzing the same model. So far, all Petri net interchange
attempts have been mainly tool-specific, but with very
low (or without any) general acceptance. For example,
DaNAMICS tool (http://www.cs.uct.ac.za/Research/
DNA/DaNAMICS) uses regular text-based format, and
Renew tool (http://www.renew.de) uses XML-based for-
mat. The Petri Net Markup Language (PNML) [4] is a
recent Petri net community effort that tries to provide
XML-based model sharing. PNML tends to be a part of
the future ISO/IEC High-level Petri net standard [20]. A

* Corresponding author. Tel.: +381 11 3950853/+381 11 3971440; fax:
+381 11 461221.
E-mail addresses: dgasevic@acm.org (D. Gasevi¢), devedzic@etf.bg.a-
c.yu (V. Devedzic).

0950-7051/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2005.12.003

particularly important advantage of this approach is that
XML documents can be easily transformed using e Xtensi-
ble Stylesheet Language Transformations (XSLT) into
other formats (that need not necessarily be XML-based).
However, this initiative is also syntactically oriented, i.e.,
it introduces some constraints that enable validation of
documents against their definition (e.g., validating whether
an arc connects two nodes of different types, i.e., a place
and a transition).

On the other hand, all approaches that formally define
Petri nets are generally intended to be used as a basis for
developing Petri net tools. Currently, these attempts are
defined using Model Driven Architecture (MDA) standards
[29] (e.g., Unified Modeling Language — UML [33], and
Meta-Object Facility — MOF [32]).

A suitable way to represent Petri nets is needed in order
to reuse them more effectively on the Semantic Web. It
requires defining the Petri net ontology for semantic
description of Petri net concepts and their relationships.
The Petri net ontology enables describing a Petri net using
Semantic Web languages (e.g., Resource Description
Framework — RDF, and Web Ontology Language — OWL)
[15,40]. Petri nets described that way can be inserted into
other, non-Petri net XML-based formats, such as Scalable
Vector Graphics (SVG, the XML-based WWW Consor-

2 D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

tium (W3C) standard for 2D vector graphics [21]), which
makes possible to reconstruct Petri net models using meta-
data and annotations according to the Petri net ontology.

We defined the Petri net ontology using experience
from previous Petri net formal descriptions (metamodel,
ontologies, and syntax). They indicate very useful direc-
tions for selecting key Petri net concepts and specifying
their mutual relations. PNML is of primary importance
here — it is closely related to the Petri net ontology. Actu-
ally, it is a medium (syntax) for semantics [36]. We addi-
tionally empowered the PNML usability by defining
mappings to/from the Semantic Web languages (i.e.,
RDF and OWL).

The next section describes existing formal descriptions
of Petri nets: metamodels, UML profiles, ontologies, and
syntax. We concentrate on Petri net syntax because most
work has been done in solving this problem (we specifi-
cally discuss the PNML). Section 3 enumerates advanta-
ges of the Petri net ontology, and gives guidelines for
its conceptualisation. Section 4 outlines development of
the Petri net ontology — its initial design and implementa-
tion using UML and Protégé [31] (i.e., RDF Schema
(RDFS)-based implementation), whereas Section 5
extends the ontology using an OWL-based UML profile
in order to support diversity of Petri net dialects. In Sec-
tion 6, we present the tool we implemented to support the
Petri net ontology, as well as an ontology-driven infra-
structure for sharing Petri nets using PNML, XSLT,
and RDF. This work is a part of the effort of the Good
Old AI research group (http://goodoldai.org.yu) in devel-
oping its platform for building intelligent systems, called
AIR.

2. Previous work on Petri net sharing

This section discusses previous work in developing a for-
mal description of Petri nets that can be used in different
software tools for Petri net: model sharing, software imple-
mentation, model validation, and so on. Therefore, we ana-
lyze present Petri net: metamodels, UML profiles,
ontologies, and syntax. The purpose of this analysis is to
identify the Petri net conceptualization underlying these
approaches.

2.1. Petri net metamodels

An illustrative and very comprehensive Petri net meta-
model is proposed by Breton and Bézivin [6]. They define
a Petri net metamodel in the context of the OMG’s
MDA initiative since they use the MOF for metamodel def-
inition. The authors assume that metamodel is closely
related to ontology. Their starting point is that a metamod-
el defines a set of concepts and relations, i.e., the terminol-
ogy and a set of additional constraints (assertions). They
see each model as encompassing both a static part and a
dynamic part. Accordingly, they define Petri net metamod-
el as a composite of three parts:

1. Petri nets definition metamodel, that defines the static
part of Petri nets (i.e., Petri net basic structure concepts:
Petri net itself, Place, Transition, Arc, and their mutual
relations). In addition, the Object Constraint Language
(OCL) is used here to define an arc’s source and target
nodes.

2. Petri nets situation metamodel, that defines a particular
situation of Petri nets. In order to represent a particular
Petri net situation, they introduce the Marking and
Token concepts in the Petri net metamodel.

3. Petri nets execution metamodel, that defines a sequence
of particular situations. This metamodel contains Petri
net concepts (e.g., Move) needed for Petri net execution,
since Petri net execution consists of a sequence of transi-
tion firings in regard of place marking.

Note that this proposal is very important for develop-
ment of Petri net tools. However, in spite of giving a useful
classification of Petri net concepts in three different parts, it
has a few shortcomings. It does not take into account the
existence of different Petri net dialects and Petri net struc-
turing mechanisms (e.g., pages). Moreover, it does not
show how Petri nets can be used on the Semantic Web with
non-Petri net tool (i.e., annotation), and hence how Petri
nets are mapped into Semantic Web language (e.g.,
RDF(S)). It also does not suggest what general MOF-
based tools can be used for model validation against the
metamodel.

Hansen proposes a Petri net UML profile [18]. Defining
a Petri net UML profile produces a solution similar to the
metamodel-based one, because UML profiles extend the
UML metamodel by introducing stereotypes, tagged values
and constraints. The main idea of a UML profile is to
enable using standard UML tools for different purposes.
Hence Hansen extends the UML metamodel with Col-
oured Petri net concepts — stereotypes for Petri net nodes,
places, transition, arcs, and declarations. Additionally, this
UML profile has tagged values attached to the stereotypes
for places (i.e., initial marking, and colour set), transitions
(i.e., guard), and arcs (expression). Also, OCL is used in
order to define more precise semantics for the UML profile.
Finally, this solution has software implementation as prac-
tical support that extends an existing UML tool (the
Knight/Ideogramic UML tool) with artifacts from the
Petri net UML profile. Although this solution is metamod-
el-based, it is fairly awkward since it is based on the UML
metamodel. This means that all UML concepts are intro-
duced in the Petri net metamodel, but most of them are
needless for the Petri net semantics. Also, this approach
has the same limitation as the previous one in terms of sup-
port for Petri net dialects, Semantic Web use, and Petri net
structuring mechanisms.

2.2. Petri net ontologies

Perleg and her colleagues propose modeling of biologi-
cal processes using Workflow [34], since it has ability to

D. Gasevi¢, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 3

represent process knowledge. On the other hand, Workflow
can be mapped to Petri nets, which allows verification of
formal properties and qualitative simulation (i.e., reach-
ability analysis). The authors developed a Petri net ontolo-
gy using Protégé and a specific graphical user interface
(GUI) that extends the standard GUI of the Protégé tool.
Actually, this GUI provides graphical tools for all Petri net
concepts (Places, Transitions, and Arcs). In addition, the
Petri net ontology is represented in RDFS, and concrete
Petri net models are represented in RDF. This solution
gives a solid starting point for defining the Petri net ontol-
ogy. However, it has serious limitations. It covers only
Time Petri nets, and no other kinds of Petri nets. It neither
defines Petri net structuring mechanisms, nor provides pre-
cise constraints (e.g., types of an arc’s source and target
nodes that can be done using Protégé Axiom Language
(PAL) constraints). Finally, it does not enable using other
ontology languages for representing the Petri net ontology
(e.g., DAML or OWL).

2.3. Petri net syntax

We analyzed two kinds of Petri net syntax: general-pur-
pose and tool-specific. Tool-specific syntax is analyzed in
the following tools: DaNAMIiCS and Renew. DaNAMIiCS
(http://www.cs.uct.ac.za/Research/ DNA/DaNAMICS) is
implemented in Java and supports High-level Petri nets
and Stochastic Petri nets. The main advantage of this soft-
ware is a rich set of tools for analysis, such as place and
transition matrix invariants and structural analysis, as well
as a few performance analyzers, both simple and advanced.
For model recording, DaNAMICS uses a file format with
the bim extension. The bim format has many internal marks
whose documentation is not available to the authors of this
paper. The second file format used by DaNAMICS has the
wam extension and these files are used for model import
(menu File, option Import net). The authors are not aware
of any documentation for this format. However, it is a text-

a

PiPs [

]

TiPs [

]

Places [

1 'Placel’
1
TimedTrans [

1

ImmedTrans [

3 'Transitionl'
1

Subnets [
1

Edges [
'Placel’
]

]

(82,104) 0 0 0 O

(201,102)

000

to'Transitionl' 1 [(139,78)

based format with a structure that evidently corresponds to
a certain Petri net object. It has been analyzed and com-
pared with the models obtained by importing files of this
format into DaNAMICS. The meaning of every format ele-
ment has been obtained as well. An example Petri net
description in wam format is shown in Fig. la, whereas
the corresponding graph of that net is shown in Fig. 1b.

Renew Petri net software tool can be freely downloaded
from http://www.renew.de, and is also Java-based. In
order to overcome the problem of model exchange with
other Petri net software tools, Renew uses XML. It sup-
ports the following Petri net dialects: object oriented Petri
nets, High-level Petri nets, P/T nets, and Time Petri nets.
Advantages of Renew are: support for synchronized chan-
nels as an advanced communication mechanism; support
for the modeling object-oriented concepts; support for
numerous arc types; a rich graphical environment. The
XML document model description is defined using Docu-
ment Type Definition (DTD) [26,28]. The assumptions
included in the formulation of this DTD are the same as
in PNML, since they use the same clements to describe
the net (XML tag net), place (place), transition (tran-
sition) and arc (arc), and have similar content models.
Each element in the Renew’s XML format can have a
graphical information and an arbitrary number of
annotations.

Abstract Petri Net Notation (APNN) is the first attempt
to define a general-purpose Petri net syntax (i.c., it has abil-
ity to describe different Petri net dialects) [2]. To increase
the readability of this notation, the keywords are similar
to LATEX commands. This notation should satisfy the fol-
lowing requirements:

o Net descriptions should be easily exchanged in electron-
ic form;

o FExtensibility — it should be used by different Petri net
dialects. Simple Petri net dialects could be extended in
order to describe high-level dialects;

[oaamics In]
FilE Edit Options Animate Analysis Window Help

TDDFTTVTFﬁf

ED EIDaNAMICSnet.bim

Fig. 1. Wam format for Petri net description, which can be imported into DaNAMICS: (a) example of a net described in this format, (b) graphical

representation.

4 D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

o Modularity and hierarchy — the Petri net description in
the file should be reusable;

e Readability — text notation should be easy to transform
into a human-readable format, as well as suitable for
printing.

This notation does not store information about Petri net
graphical elements (place position, transition, place name,
etc.). The abstract notation for each Petri net class is
defined in BNF. The convention used for writing grammar
productions is that terminals are written using lower-case
letters and non-terminals using upper-case letters. A short
review of APNN, using an example of P/T nets, is shown
in Fig. 2. This grammar is useful from the extensibility
and modularity perspectives. These requirements should
be supported by the Petri net ontology as well, and they
are used as guidelines for defining the PNML.

2.4. Petri Net Markup Language

The Petri net community is working for three years
already on development of the Petri Net Markup Language
(PNML) [22,41] that might become a part of the future
High-level Petri nets ISO/IEC standard [20]. The PNML
is a proposal that is based on XML. The design of PNML
was governed by the following principles [4]:

e Flexibility — PNML must be able to represent any kind
of Petri net with its specific extensions and features.

e Unambiguity — Ambiguity is removed from the format
by ensuring that the original Petri net and its particular
type can be uniquely determined from its PNML repre-
sentation. Accordingly, PNML supports the definition
of different Petri net types through the use of the Petri
net type definition (PNTD), which specifies eligible
labels for a particular Petri net type.

a \beginnet, \endnet, {, 1},
\arc, \name, \init, \from,

e Compatibility — Unlimited exchange of information
between different types of Petri nets should be provided.
The PNML comes with conventions on how to define a
label with a particular meaning. The Conventions Doc-
ument predefines for all kinds of extensions both their
syntax and intended meaning. When defining a new
Petri net type, the labels can be chosen from this Con-
ventions Document.

PNML specification is based on the PNML technology
metamodel that formulates the structure of PNML docu-
ments. Actually, this metamodel defines the basic Petri
net concepts (places, transitions, and arcs), as well as their
relations that can be presented in a PNML document. Cur-
rent version of PNML is version 1.3, and it is defined using
RELAX NG - an XML grammar definition mechanism.
One should notice that PNML can also be described using
W3C’s XML Schema definition, and previous PNML ver-
sions were defined using XML Schema as well. The full
PNML definition, as well as a few examples of PNTD
can be found on the PNML home page (http://www.
informatik.hu-berlin.de/top/pnml/about.html).

PNML, being more matured, is currently supported (or
will be supported soon) by many Petri net software tools,
for instance: Petri Net Kernel (PNK), CPN Tools, Wor-
flan, PIPE, PEP, VIPtool, P3, etc. There are also Petri
net tools that do not primarily use PNML syntax, but do
use formats considerably similar to PNML (e.g., Renew).
In this paper we emphasize PNK — a tool that is closely
related to the PNML technology [4]. PNK is not just a
Petri net tool, but also an infrastructure for building Petri
net tools [23]. It is not limited to a single Petri net dialect;
on the contrary, it can be used for each Petri net dialect,
supporting specific features of each one. Thus, it provides
methods to manage Petri nets of different types. PNK
implements a data model for Petri nets that is similar to

\place, \transition, \like,

\to, \capacity, \weight

b NET, ELEMENT, PLACE, TRANSITION, ARC, ID, NAME, INIT,

WEIGHT,CAP, STRING, INTEGER

¢ NET = \beginnet{ID} ELEMENT \endnet
ELEMENT = empty
| PLACE ELEMENT
| TRANSITION ELEMENT
| ARC ELEMENT
ID = STRING
PLACE = \place{ID}{ NAME INIT CAP }|
\place{ID}{ \like{ID} }
NAME = empty | \name{ STRING }
INIT = empty | \init{ INTEGER }
CAP = empty | \capacity{ INTEGER }
TRANSITION = \transition{ID}{ NAME }
ARC = \arc{ID}{ \from{ID} \to{ID} WEIGHT }
WEIGHT = empty | \weight{ INTEGER }

Start-symbol: NET

Fig. 2. Abstract Petri net notation: (a) the set of terminal symbols, (b) the set of non-terminal symbols, (c) the set of grammar productions.

D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 5

that of PNML. Each place, transition, arc, or even the net,
may contain several labels related to the Petri net type.

For educational purposes, we developed P3,a Petri net
tool that supports PNML [12]. P3’s details are discussed
in the Section 6.

3. The Petri net ontology guidelines

As we have seen so far, Petri net formats use different
concepts for defining its syntax. Some of these syntax-
based approaches actually have problems with syntax val-
idation. For instance, it is very difficult to validate a text-
based document (i.e., DaNAMIiCS) without a special-pur-
pose software for checking the corresponding format. A
slightly better solution is to use DTD for XML definition
as the Renew does. But DTD has well-known drawbacks:
it does not support inheritance (generalization/specializa-
tion), it does not have datatype checking (for the primary
semantics checking), it does not support defining specific
formats, and DTD documents have a non-XML structure.

The W3C XML Schema overcomes most of these prob-
lems, since it has: a rich set of datatypes, constructs to
define inheritance of complex as well as simple types, and
document structure that is in the form of a well-formed
XML document. But XML Schema has no full support
for describing semantics [24]. In fact, XML Schema is only
a way for defining syntax. For example, current PNML
definition does not have the ability to validate whether
an arc connects a place and a transition, or two transitions
or two places. Also, directly using some standard XML
validators cannot validate whether a reference place has a
reference to a place or other reference place [4]. In order
to perform this kind of validation, one must use some spe-
cific tools (e.g., for PNML it is proposed to use the Jing
validator), but these tools are not widely known in the
XML community. Furthermore, if we want to share Petri
net models not only with Petri net tools, we must have a

Table 1

formal way for representing Petri net semantics since we
can not expect that a non-Petri net tool performs semantic
validation.

We believe that the concept of ontology can be used for
formal description of Petri net semantics. In this paper,
domain ontology is understood as a formal way for repre-
senting shared conceptualization in some domain [16].
Ontology has formal mechanisms to represent concepts,
concept properties, and relations between concepts in the
domain of discourse. With the Petri net ontology, we can
overcome validation problems that we have already
noticed. However, the Petri net ontology does not exclude
current Petri net formats (especially PNML). Ontology is
closely related to syntax, in the sense that syntax should
enable ontological knowledge sharing [7]. With the Petri
net ontology, we can use ontology development tools for
validation of Petri net models (e.g., Protégé). Also, having
the Petri net ontology one can use Semantic Web languages
for representing Petri net models (e.g., RDF, RDF Schema
-RDF, DAML + OIL, OWL, etc.) [15]. Thus, we show
how PNML can be used as a guideline for the Petri net
ontology.

Accordingly, we extracted common Petri net concepts
form the PNML, as well as from other analyzed Petri net
syntax formats. The review of common concepts is given
in Table 1. Attributes of particular concepts are written
in normal face font in order to distinguish them from their
related elements (bold face font) for each format. This also
constitutes the basic guidelines for building the Petri net
ontology. The main purpose of the ontology is to construct
semantic armature around which the extracted Petri net
concepts would be built [9].

An additional important requirement for the Petri net
ontology is to support different Petri dialects. It is obvious
that each Petri net dialect defines its conceptualisation. In
our approach, the Petri net ontology should have its core.
This core should contain the common Petri net concepts.

Review of Petri net concepts, attributes and contents extracted form existing Petri net syntax formats: PNML, APNN, DaNAMICS format, and Renew ’s

XML format for model sharing

Concept APNN DaNAMICS Renew PNML
Net Identifier, place, - Identifier, type, place, Identifier, type, place, transition,
transition, arc transition, arc, annotation arc, page, reference place
and transition
Place Identifier, name, Name, initial marking, Identifier, type, graphical Identifier, name, initial marking,
initial marking, capacity marking, graphical information information, annotation graphical information
Transition Identifier, name Kind (immediate and time), Identifier, type, graphical Identifier, graphical information,
name, graphical information, information, annotation name, tool specific
possibility, time, delay
Are Identifier, source, Source, target, multiplicity, Identifier, source, target, Identifier, source, target,

Graphical information
Initial marking

Name

target, multiplicity

Init

Value

graphical information

Position
Contained by place tag

Contained by place tag

type, graphical information,
annotation

Position, size, text size, color. ..

Annotation: type, identifier,
text, graphical information
Annotation: type, identifier,
text, graphical information

graphical information, multiplicity

Absolute position, relative position
Value, graphical information

Value, graphical information

6

Furthermore, each Petri net dialect extends this ontology
core with its specific concepts. In the next section we define
the Petri net ontology using UML and Protégé ontology
development tool.

4. The Petri net ontology — initial implementation

There are many different ways to develop an ontology
[39] and one can use different tools for ontological engi-
neering tasks (Protégé, OilEd, OntoEdit, etc.). In order to
develop the Petri net ontology, we decided to use UML
[8]. UML was suitable because it is a generally accepted
and standardised tool for analysis and modeling in soft-
ware engineering. We were also able to employ UML-
based Petri net descriptions existing within the PNML def-
inition [4]. However, neither UML tools nor the UML
itself are intended to be used for ontology development.
Thus, in order to achieve more precise Petri net definition
than a UML model provides, it is necessary to use an
ontology development tool. We decided to use Protégé
2000 [31] since it is a popular tool for ontology develop-
ment and can import UML models. This is enabled by
Protégé’s UML backend that imports UML models (repre-
sented in XML Metadata Interchange (X MI) format) into a
Protégé ontology.

4.1. The underlying idea

The hierarchy of core concepts of the Petri net ontol-
ogy is shown in Fig. 3. In our design of the Petri net

D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

ontology, there is a single root element that we call
ModelElement. This element is the parent for all ele-
ments of Petri net structure. The name of this class is
ModelElement because the UML metamodel uses the
same name for its root class [33]. A Petri net (the Net
class) can contain many different ModelElements. Mode-
IElement and Net have the ID attribute (unique identifi-
er) of String type, and Net has also an attribute that
describes the type of the Petri net. It is in accordance
with PNML. The three main Petri net concepts (place,
transition, and arc) define the structure of a Petri net,
and they are represented in Fig. 3 with the correspond-
ing classes (Place, Transition, and Arc). Places and tran-
sitions are kinds of nodes (Node). In some Petri nets, an
arc connects two nodes of different kinds. This con-
straint can be represented using OCL, with the following
statements:

context Arc
inv: self. to.o0clIsTypeOf(Transition) and
self. from. oclIsTypeOf(Place) or
self.to.oclIsTypeOf(Place) and
self. from. oclIsTypeOf(Transition)

However, it is important to say that this is not a general
the Petri net ontology statement, since there are Petri net
dialects where an arc can connect, for instance, two transi-
tions. In this case, one understands that there is a place
between transitions [37]. Hence, we did not include this
statement in the core Petri net ontology, but it should be

<<metaclass>>
i g Module
| 1 . |+eiem ents
Net
| +elements | ModelElement |ielements —
| ¢ID: Sting | ¢ID: Sting
i 1. : . 1| etype : String
<<|ns£anceof:|> L ZF 1.
I , 1
| Strustural Element AT 0 e [Noce | Heference
l 1 - 1 1
| 43 +romNode %
| T |
Mo dulelnstance Page
Place Transition NodeReference

g
I |

PlaceReference TransitionReference

— 7

—

self.reference .oclisType OfPlace) or
self.reference .oclisType Of PlaceRe fere nc

selfreference oclls TypeOf(Transition) or
selfreference oclls TypeOf(TransitionReferen

;

)

Fig. 3. The Petri net ontology — hierarchy of core Petri net concepts.

D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 7

defined in ontology extensions for different Petri net
dialects.

The Node class is introduced in the ontology in order to
have a common way to reference both places and transi-
tions. In order to make Petri net models easy to maintain,
different concepts for structuring can be used. In the Petri
net ontology, we have the class StructuralElement. This
class is inherited from ModelElement, and we inherit from
this class all classes that represent structuring mechanisms.
We have decided to support two common mechanisms:
pages (the Page class), and modules (the Module class). A
Page may consist of other Petri net ModelElements — it
may even consist of other pages. A NodeReference, which
can be either a TransitionReference or a PlaceReference,
represents an appearance of a node. The Decorator design
pattern [11] was used to represent referencing of a NodeRe-
ference. Here, there are also constraints: a TransitionRefer-
ence can refer to either a Transition or another
TransitionReference, while a PlaceReference can refer to
either a Place or another PlaceReference. We show these
constraints using OCL in Fig. 3. These constraints also
affect the OCL constraint for arcs that we have already
described, but we do not show their interaction due to
the limited size of this paper. Unlike the OCL statement
for arcs, this statement can be applied on all Petri net
dialects.

The second kind of structuring mechanisms are mod-
ules. A Module consists of ModelElements, and it can be
instantiated (much like an object is instantiated from a
class in the object-oriented paradigm). Accordingly, Mod-
ule is a metaclass (the stereotype in Fig. 3), and Moduleln-
stance depends on Module (that shows a stereotyped
instanceOf dependency from Modulelnstance to Module).

In Petri nets, an additional property (or feature) can be
attached to almost every core Petri net element (e.g., name,
multiplicity, etc.). Thus, we have included in the Petri net
ontology a description of features and in Fig. 4 we shortly
depict how these features have been added. The root class
for all features is Feature. This is also similar to the UML

Feature

GraphicalFeature

metamodel. The Petri net ontology follows the PNML’s
classification of features: those that contain graphical
information (annotation) and those that do not have them
(attribute). In the Petri net ontology every feature directly
inherited from Feature class is an attribute (e.g., ArcType),
whereas GraphicalFeature class represents annotations.
GraphicalFeature has graphical information that can con-
sist of, for instance, position (the Position class and its chil-
dren Absolute Position and Relative Position). Examples of
graphical features are: Multiplicity, Name, InitialMarking,
and Marking. It is interesting to notice that marking and
initial marking consist of tokens (the Token class). In order
to support token colors, the Token class is abstract. In
Fig. 4 we show a case when there are no colors attached
to tokens; instead, we just take into account the number
of tokens (the IntegerToken class).

Attaching a new feature to a Petri net class requires just
adding an association between a class and a feature.

Fig. 5 shows how Name and Position features are
attached to the Node class. Using the same procedure one
can attach features to other Petri net classes.

A UML description is a convenient way for representing
the Petri net semantics. Also, this Petri net ontology can be
used as a Petri net metamodel in future Petri net implemen-
tations that can take advantage of the MDA concept and
repository-based software development [5]. However, it
does not let us semantically validate Petri net models.
For example, we cannot use OCL statements to perform
this task. In addition, UML attributes and ontology prop-
erties are semantically different concepts. Unlike a UML’s
attribute, ontology property is a first-class concept that can
exist independently of any ontology class [1].

There are to ways to further refine the Petri net ontolo-
gy. The first one is to use a UML profile [25] for UML-
based ontology development. The second one recommends
using standard ontology development tools. We decided to
use: 1. Protégé 2000, since it provides all the necessary
ontology development features (constraints and support
for ontology languages), but it also has the ability to use

+gaphicalinfomation| Graphi calhformation

1

[I [

] +position j 0.1

Multiplicity Name InitialMarking

Marking Position

ovalue : Long &valueName : String

&% © Integer

&Y © Integer

—

Relative Absolute
Position Position

Fig. 4. Property hierarchy of the Petri net ontology.

D. Gasevi¢, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

. . o
Palsfm 0 Arc +multiplicity Mulfiplicity
x : Integer . 4

gy . Integer +breakingPoints ovalue : Long

Fig. 5. An example of how features are attached to a class in the Petri net ontology: a Petri net node has position and name.

the UML models we have shown; 2. The Ontology UML
profile [10] that is based on OWL.

4.2. The Petri net ontology implementation using Protégé
2000

We can precisely define the Petri net ontology in Protégé
2000. We can differ between a class and a metaclass (e.g.,
Module — a metaclass, Modulelnstance — a class), we can
use different Semantic Web languages provided through
Protégé’s backends (RDF(S), OWL, DAML + OIL) to
represent the Petri net ontology, and we can specify the
constraints that we defined in the UML model using
OCL (e.g., PAL). We can then validate all ontology
instances using these constraints, and detect if there is
any instance that does not conform to some of the
constraints.

After the initial UML design of the Petri net ontology,
it was imported into the Protégé using Protégé’s UML
backend (http://protege.standford.edu/plugin/uml). This
plug-in has the ability to read an XML format (i.e.,
XMI) for representing UML models. The main shortcom-
ing of this UML backend is that it is unable to map

UML class associations. Thus, we had to add manually
all the slots that are represented in UML as association
ends. A snapshot of the Petri net ontology after we
imported it and inserted all slots (i.e., association ends)
in Protégé is shown in Fig. 6.

Of course, Protégé does not have the ability to transform
OCL constraints into PAL constraints. Thus, we have also
manually reconstructed all OCL-defined constraints from
the UML model of the Petri net ontology into a set of cor-
responding PAL constraints. For instance, a constraint
attached to TransitionReference that can refer only to a
Transition or another TransitionReference looks like this:

(forall ?transitionRef
(or (instance-of (reference ?transitionRef)
Transition)
(instance-of (reference ?transitionRef)
TransitionReference)

))

This constraint can be applied to instances of the Petri
net ontology, and Protégé shows all those instances of
TransitionReference that do not conform to the ontology.

‘?"'f'ﬂ Ontology Protégé-zo00 (D:\E\RadoviiDoktorat)Ontologija’Core\Merged\PN Ontology.ppri) = I:Ilﬁl
Project Window Help PAL Constraints
EIECREEY
[(i ciasses [[[s][|siots | [T Forms | T #4 Queries | XML | PA
— ; = 5 |
Relationship Superc... v | V| C |[?] AL (©) TransitionReference _(type=:STANDARD-CLASS) : GIEd
O THING | | Mame Documentation Canstraints [vic]+] -
©-(C) SYSTEM-CLASSA |4 " e .
= |8 Transition reference PAL constrair
® @Fe_a%ure | ‘ |TfiﬂSIlIOnREI'EIEﬂE9 I
§ (© GraphicalF eature
(©) InitialMarking Role
(© Marking [concrete ~] T
(© Multiplicity / -
(©) Name : 1
© Graphicalinformation | e }'J M @ Lt EJ]
© (C) ModelElementA 1l Name 1= Twpe | Cardinality] Other Facets
© Arc reference Instance required single classes=(Node)
@ (O MNodeA ; name Instance required single classes=(Name}
® (©) NodeReference A 1S position Instance required single classes=(Position)
(©) PlaceReference Slio String required single

(O TransitionReferance |
© Place |
(© Transition

@ (©) structuralElement A
(© Moduleinstance
© Page

@ Module

(© Moduleinterface

O Net
9 é) Position A

(©) Absolute Position

(©) Relative Position
© (© Token#

(©) IntegerToken

BEf

Superclasses
(C) NodeReference *

Fig. 6. The Petri net ontology in Protégé 2000.

D. Gasevi¢, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 9

Applying the same principle, we inserted the constraints for
PlaceReference, and Arc.

Using Protégé we generated the RDFS that describes
the Petri net ontology. One can use it for reasoning about
a document that contains a Petri net model. Listing 1
shows an excerpt of this RDFS. This listing depicts how
RDFS defines the classes for ModelElement, Node, Transi-
tion, Place, Arc, and ArcType. Also, this listing shows how
RDFS defines Feature, as well as how name feature is
defined and attached to classes that should have this
property.

Since Protégé supports more concepts for ontology def-
inition than RDFS does, one can notice some extensions of
RDFS in Listing 1. These Protégé extensions are manifest-
ed by namespace a. For example, they are used to define
cardinality (a: maxCardinality, a:minCardinali-
ty), to refer to a PAL constraint (a: slot_con-
straints), etc. Of course, this is neither a limitation of
the Petri net ontology nor of the Protégé tool, but of RDFS
itself. Most of such limitations are overcome in OWL [40],
but this discussion is beyond the scope of this paper.

On the other hand, one can see that the RDFS/Protégé
Petri net ontology does not take into account Petri net dia-

<rdf:RDF xmlIns:rdf="&rdf;" xmIns:a="&a;" xmins:rdfs="&rdfs;">
<l-- .. -->

<rdfs:Class rdf:about="ModelElement" a:role="abstract"
rdfs:label="ModelElement">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdfs:Class rdf:about="Node" a:role="abstract" rdfs:label="Node">|
<rdfs:subClassOf rdf:resource="ModelElement"/>

</rdfs:Class>

<rdfs:Class rdf:about="Place" rdfs:label="Place">
<rdfs:subClassOf rdf:resource="Node"/>

</rdfs:Class>

<rdfs:Class rdf:about="Transition" rdfs:label="Transition">
<rdfs:subClassOf rdf:resource="Node"/>

</rdfs:Class>

<rdfs:Class rdf:about="Arc" rdfs:label="Arc">
<rdfs:subClassOf rdf:resource="ModelElement"/>
<a:_slot_constraints rdf:resource="PN Ontology_00043"/>

</rdfs:Class>

<rdfs:Class rdf:about="ArcType" rdfs:label="ArcType">
<rdfs:subClassOf rdf:resource="Feature"/>

</rdfs:Class>

<rdfs:Class rdf:about="Feature" rdfs:label="Feature">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

<l-- .. -->

<rdf:Property rdf:about="name" a:maxCardinality="1"
a:minCardinality="1" rdfs:label="name">
<rdfs:range rdf:resource="Name"/>
<rdfs:domain rdf:resource="Node"/>
<rdfs:domain rdf:resource="Place"/>
<rdfs:domain rdf:resource="PlaceReference"/>
<rdfs:domain rdf:resource="Transition"/>
<rdfs:domain rdf:resource="TransitionReference"/>
</rdf:Property>

<lem >

</rdf:RDF>

Listing 1. A part of the RDF Schema of the Petri net ontology.

lects. In this version of the Petri net ontology we can add
Petri net dialect-specific properties or constraints, but we
have no ability to distinguish between the core concepts
form the Petri net ontology and concepts Petri net dia-
lect-specific concepts. One possible solution is to use
XML/RDF namespace mechanism. But, this solution is
also limited to use in Protégé. We need a better way to rep-
resent ontology modularization. Accordingly, we decided
to use OWL and an OWL-based UML profile in order to
overcome these Petri net ontology limitations.

5. OWL-based Petri net ontology

For ontology development we use the Ontology UML
profile (OUP) (see [10] for details) that is based on OWL
[40]. The OUP provides stereotypes and tagged values for
full ontology development. OUP models can be (automat-
ically) transformed into OWL ontologies (e.g., using
XSLT) [14].

Using the OUP, one can represent relations between the
core concepts of the Petri net ontology and the specifics of
a Petri net dialect. For that purposes we suggest using the
OUP’s package mechanism. In the OUP, we attach “ontol-
ogy”’ to a package. That means the package is an ontology.
Accordingly, we can put all core concepts of the Petri net
ontology in an <<ontology>> package. If we extend
the Petri net ontology with concepts of a Petri net dialect
we only need to create a new <<ontology>> that would
be related with the core <<ontology>> through the
<<include>> dependency. In Fig. 7 we illustrate this
extension principle.

The example from Fig. 7 depicts how we extend the core
Petri net ontology (<<ontology>> Petri net core) with
concepts of Time Petri nets and Upgraded Petri nets. An
additional advantage of this approach is that we have the
ability to merge concepts from a number of ontologies
(i.e., <<ontology>> packages). As a result we obtain
one ontology definition, for instance, in OWL (by applying
XSLT). Comparing with the current PNML proposal for
the PNTDs [4] one can see that this approach improves

<<ontology>>
Core Petri net ontology

7

<<include>>/ .
’ <<include>>»

N

<<ontology>>
Time Petri nets

<<ontology>>
Upgraded Petri nets

Fig. 7. Extension mechanism of the Petri net ontology: support for Petri
net dialects.

10 D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

<<OntClass>>
Module

<<domain=>
1..*

<<0OntClass>>
ModelElement

<<OntClass>>
StructuralElement

<<ObjectProperty>>

. element
<<domair>>

x>

<<range>:>

1.*
<<domairn=>>

<<OntClass>>
Net

Fig. 8. Collection of Petri net model elements: the OUP element property.

<<OntClass>> <<OntClass>>
Net GraphicalFeature

< <domaire> T
1

<<ObjectProperty=> <<OntClass>>

name NameDescriptor
1 <<range>>

<<OntClass>>
Node

<<domain>>

Fig. 9. An example of a graphical feature defined in the Ontology UML
profile: name object property.

the maintainability of Petri net concepts, and better sup-
ports reusability of the Petri net ontology concepts. So
far we have defined the Petri net ontology extensions for:

<<OntClass>> <<equivalentClass>>

Arc

<< Intersection >>

<<intersectionOf>>'
A4 \V4

P/T nets, Time Petri nets [30], and Upgraded Petri nets
[38].

The rest of this section focuses on the discussion of the
core concepts of the Petri net ontology. The core Petri net
hierarchy, which is shown in Fig. 3, is the same for the Petri
net ontology represented in the OUP. Actually, there is a
difference with regard to both associations and attributes
in the model from Fig. 3, since ontology development
understands property as a fist-class concept. Thus, it is nec-
essary to transform all association between classes as well
as all class attributes into the OUP property stereotypes
(<<DataTypeProperty>> and <<ObjectProper-
ty>>). An example of this transformation is shown in
Fig. 8. The <<ObjectProperty>> element defined in
Fig. 8 is attached (through the <<domain>> association)
to the following classes:

StructuralElement, Net, and Module. It means that each
of these classes has a collection of elements (one or more).
The element can take values from the ModelElement class.
In a similar way, we define the other Petri net properties
(e.g., name, reference, id, etc.). In addition, one can note
that in the OUP we use the <<OntClass>> stereotype
for representation of ontology classes.

Note that in the OUP Petri net ontology we do not need
the Feature class since property is the first class in ontology
development. Accordingly, we have <<ObjectProper-
ty>> and <<DatatypeProperty>> that represent
properties in the Petri net ontology. On the other hand,
we want to provide support for graphical features (Graph-
icalFeature). Fig. 9 gives an example of the <<Object-
Property>> name that has already been declared as a

__________________ >

<< Union >>

<<unionOf>>
-

< <intersectionOf>>

2 <<unionOf>>

<< Intersection >>

<<intersectionOf>>' LdntersectionOf>>
Ll 1

vV

<<OntClass>>

<<OntClass>>

<<OntClass>> <<OntClass>>

<<allValuesFront >
<<allValuesFront3

<<allValuesFrone> <<allValuesFrom>

<<Restriction>>

<<Restriction>>

<<Restriction>> <<Restriction>>

<<allValuesFrome3 |

T
<<onProperty>>' ! \ '
! ! : ' <<allValuesFrom>> '
1 1<<onProperty>> <<allValuesFronm > : u ' <<onProperty>>
AV4 AV V4 WV ! !
<<OntClass>> lk<ObjectProperty>> < <ObjectProperty>> <<OntClass>> 1 !
Place fromNode toNode Transition <<onProperty>> '
1
!
I
I

<<allValuesFroms>

Fig. 10. Restriction: an arc only connects a transition and a place. This restriction is represented in the Ontology UML profile that can be transformed to

OWL usingXSLT.

D. Gasevi¢, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 11

graphical feature. In this case, the name property has as its
range (through the <<range>> association) the NameDe-
scriptor <<OntClass>>. However, this class is inherited
from the GraphicalFeature. GraphicalFeature is introduced
in the Petri net ontology to be the root class for all the clas-
ses that constitute the range for a graphical feature. Simi-
larly, we define other graphical features (e.g., marking).
In addition, the name property has domain (the
<<domain>> association): Net and Node.

Fig. 10 shows how we make restriction on a Petri net
arc using the Ontology UML profile. Note that this
restriction is not a part of the core Petri net ontology
since we have already mentioned that is not a generally
applicable rule for all Petri net dialects. However, most
of Petri net dialects have this restriction, and hence we
take it into account here. The restriction means that a
Petri net arc (<<OntClass>> Arc) only connects a
Place and a Transition. This statement is expressed as a
union (<<Union>>) of two intersections (<<Inter-
section>>). Our <<OntClass>> Arc is an equivalent
class (<<equivalentClass>>) of this union. Since
these two intersections are defined in a symmetric way,
we only explain the left-hand one in Fig. 10. This intersec-
tion says that andrc takes all values from (<<all-
ValuesFrom>> association): <<OntClass>> Place
for the fromNode property and <<OntClass>> Transi-
tion for the toNode property.

<owl:Class rdf:ID="ModelElement"/>
<owl:Class rdf:ID="Arc">
<rdfs:subClassOf rdf:resource="#ModelElement"/>
<I--OWL subClass statements -->
<l--l >
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#fromNode"/>
<owl:allValuesFrom rdf:resource="#Place"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#toNode"/>
<owl:allValuesFrom rdf:resource="#Transition"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#fromNode"/>
<owl:allValuesFrom rdf:resource="#Transition"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#toNode"/>
<owl:allValuesFrom rdf:resource="#Place"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
<I--OWL subClass statements -->
<l-l >
</owl:Class>

Listing 2. A part of the Petri net ontology in OWL: the Arc class
restriction from Fig. 3.

The second (right) intersection specifies the opposite
statement: Arc’s toNode property takes all values from
Place, and Arc sfromNode property has all values from
Transition.

It should be noted that having the Arc restriction
expressed in this way we are able to automatically map
the UML model to an ontology language (e.g., OWL).
On the contrary, this is very difficult if these constraints
are specified in OCL or PAL. Listing 2 shows an excerpt
of the Petri net ontology in OWL. It was generated using
an XSLT for transformation from the OUP ontology
(i.e., XMI) to OWL. The listing illustrates a part of
OWL Arc class definition that is equivalent to the OUP
Arc restriction. It is important to note that in the OWL
ontology logical expressions take an XML form (e.g., the
Arc restriction), unlike the Protégé PAL constraints that
are written in a Lisp-like form. It is more convenient to
parse an ontology statement represented in an XML for-
mat using standard XML parser, as well as transform it
using the XSLT mechanism.

6. Ontology-driven Petri net sharing

In order to show practical tool support for the Petri net
ontology, we overview the P3 tool. This tool has been ini-
tially developed for Petri net teaching [12], but we extended
it, and thus it can be used in conjunction with the Petri net
ontology.

6.1. P3 — Petri net tool

Being based on the PNML concepts, P3 is compatible
with PNML. The P3 tool supports P/T nets and Upgraded
Petri nets. The major parts of the P3 architecture are the
following:

o Petri net structure — The central part of the structure is a
Petri net that includes the basic Petri net concepts: plac-
es, transitions, and arcs [30]. Important parts of the Petri
nets that pertain to their structure are marking and ini-
tial marking, even though these concepts are not real
parts of the Petri net structure.

o Petri net graph — 1t is closely related to the Petri net
structure. Roughly speaking, Petri net graph is a graph-
ical notation for the Petri net structure.

o Petri net simulation — It implements two different modes
of simulation: parallel execution of all enabled transi-
tions with a previous conflict resolution, and single exe-
cution of an enabled transition.

e Petri net analysis tools — P3 supports two well-known
Petri net analysis tools — Reachability Tree and Matrix
Equations [35]. We also introduced new analysis tools
appropriate for teaching purposes — Fireability Tree
and 4 cyclic firing graph.

o Petri net model sharing — P3’s model sharing is based on
PNML.

12 D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

A P3 screenshot is shown in Fig. 11a. The P3’s architec-
ture is shown in Fig. 11b. The Petri net class organization is
shown on the left in Fig. 11b, whereas the supported for-
mats are on the right side.

The formats supported by P3 are the main point of
interest for the Petri net ontology. The P3’s model sharing
mechanism is based on using PNML. All other formats are
implemented in P3 using XSLT (from the PNML). Accord-
ingly, P3 can export to the following Petri net tool formats:

o DaNAMiCS — A tool that uses an ordinary text format.
Model exchange with this tool is useful since DaNAM-
iCS provides many Petri net analysis tools such as:
matrix invariants and transition matrices, structural
analysis, as well as some simple and advanced perfor-
mance analyses.

e Renew — A tool that uses another XML-based format.
Its advantages include: support for synchronization
channels, which is an advanced communication mecha-
nism; support for modeling object-oriented concepts; a
number of supported types of arcs; rich graphical envi-
ronment [27]. This tool can be used for modeling differ-
ent agent-based systems.

e PNK — A tool that uses PNML, but since there are some
differences between this PNML application and the P3’s
PNML, we had to implement an XSLT. PNK is not

a @ (-[0/x]
[ZEie Edt Vew Mode Anape Wrdow Heb - TET
I IR AR
= Pla = =

7 s — =

P

4l | _fj
e y FE Step of smulstion :]DK _J
O = SN L —]
/ / ~L. 2
of e
\u—"—r]
b
a hd
. | o
Ready Nom | &
b Petri net classes Formats

Petri nets analysis)
i XML formats of analysis

: . . results
Petri nets simulation
DOM DaNAMICS
: e
Petri nets structure = = il
£ = R Renew
=R

RDF

Fig. 11. P3, ontology-based Petri net tool: (a) P3 screenshot; (b) P3
architecture: class organization and supported XML formats.

focused on a specific Petri net dialect; it is possible to
use PNK with Petri net dialects with specific extensions
[23].

PIPE — A tool that uses PNML. No additional transfor-
mation is needed in order to exchange Petri net models
between P3 and PIPE. The models can be exchanged in
both directions: P3 < PIPE. PIPE provides different Petri
net analysis tools such as invariant analysis and state space
analysis.

Our experiences obtained in exchanging Petri net models
between P3 and other Petri net tools can be found in [13].

P3 tool has the ability to generate RDF description of a
Petri net. This P3’s feature is also implemented using
XSLT. The generated RDF is in accordance with the Petri
net ontology (in its RDFS form). By having the RDF
description of a Petri net model we are able to additionally
describe other non-Petri net documents — we can incorpo-
rate a Petri net into, the for example, SVG documents.
We also implemented the XSLT for the opposite direction,
i.e., to transform RDF into PNML, and hence we can ana-
lyze RDF-defined Petri nets using standard Petri net tools.
Additionally, other XSLTs that we have explained above
can be applied on PNML to obtain tool specific formats
(e.g., DaNAMICS).

P3 implements conversion of the PNML Petri net model
description to SVG. Since this format can be viewed in
standard Web browsers (e.g., Internet Explorer), it is suit-
able for creating, for instance, Web-based Petri net teach-
ing materials. Learning objects, created in this way, have
their underlying semantics described in RDF form, and
can be transformed into PNML as well as analyzed with
standard Petri net tools. P3 provides two kinds of SVG
annotations [17]:

1. As embedded metadata — An RDF description is incorpo-
rated in SVG documents. The standard SVG has the
metadata tag as an envelope for metadata.

2. As remote metadata — An RDF description is in a sepa-
rated document.

Listing 3 shows a simple RDF-annotated SVG docu-
ment using the first kind of annotation. Within the metada-
ta tag is the RDF description of SVG primitives that draw
Petri net graph (e.g., g, path, text, rect, circle).
The Petri net nl (net tag) contains a place (pl), a transi-
tion (¢1), and an arc (al). The arc al connects the place
pl and the transition ¢1 (¢1 input arc). Each SVG group
of primitives that correspond to a Petri net element is
enveloped with the g tag (group in terms of SVG) with
the id attribute. For each group of SVG primitives there
is an RDF description (e.g., Place) in the metadata part
of the document. The id attribute of an SVG group has
the same value as the rdf: about attribute of the corre-
sponding RDF description. Listing 3 shows just a part of
the RDF description due to its size. In addition, this
RDF description contains appropriate elements for each

D. Gasevi¢, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 13

<?xml version="1.0" encoding="1S0O-8859-1"?>
I<svg width="2000px" height="2000px">
<metadata>
<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns="http://protege.stanford.edu/PN_Ontology#"
xmins:rdfs="http://www.w3.0rg/TR/1999/PR-rdf-schema-19990303#'
<Place rdf:about="p1" ID="p1" rdfs:label="p1">
<position rdf:resource="p1lposGldesc"/>
<initialMarking rdf:resource="plinitmarking"/>
<marking rdf:resource="p1marking"/>
<name rdf:resource="plname"/>
</Place>
<Transition rdf:about="t1" ID="t1" rdfs:label="t1">
<position rdf:resource="tlposGldesc"/>
<name rdf:resource="tlname"/>
<[Transition>
<Arc rdf:about="al" ID="al" arcType="normal" rdfs:label="al">
<fromNode rdf:resource="p1"/>
<multiplicity rdf:resource="almulti"/>
</Arc>
<l-- RDF descriptions for properties of Place, Transition,
and Arc are omitted due to their length -->
<Net rdf:about="n1" ID="n1" rdfs:label="n1">
<elements rdf:resource="p1"/>
<elements rdf:resource="t1"/>
<elements rdf:resource="al"/>
</Net>
</rdf:RDF>
</metadata>
<title>Petri net - SVG format</title>
<desc>Exported from the P3 Petri net tool</desc>
<gid="al">
<path class="Line" d="M76 176 L 217 176"/>
<g transform="translate(217 ,176)">
<g transform="translate(-22, 0)">
<g transform=" rotate(0)">
<path class="Line" d="M 0 -3 L 7 0"/>
<path class="Line" d="M 70 L 0 3"/>
<lg>
</g>
</g>
</g>
<gid="p1l">
<circle class="Place" r="15" cx="76" cy="176"/>
<text class="Label" text-anchor="middle" x="76" y="160">p1</text>
</g>
<gid="t1">
<rect class="Transition" x="202" y="161" width="30" height="30"/>
<text class="Label" text-anchor="middle" x="217" y="160">t1</text>
</g>
</svg>

Listing 3. An example of an RDF-annotated SVG document that
contains a simple Petri net (nl) consisting of a place (pl), a transition
(tl), and an arc (al) that connects pl and tl.

Petri net property (e.g., position, marking, initial-
Marking, name, etc).

6.2. Semantic Web infrastructure for Petri nets

Although P3 uses RDF, it does not mean that we have
abandoned PNML. On the contrary, since we implemented
an XSLT (from RDF to PNML), we continued using
PNML. Actually, we enhanced PNML because one can
use P3 to convert a PNML model to RDF, and then the
Petri net model can be validated against the Petri net ontol-
ogy. That way, we achieved a semantic validation of Petri
net models. Of course, PNML is very useful since it con-
tains well-defined concepts for Petri net models interchange
and it is now used by many Petri net tools. Furthermore,
since we implemented the XSLTs from PNML to Petri
net formats of other Petri net tools, we can also employ
PNML’s analysis capabilities.

In Fig. 12 we show the Semantic Web infrastructure
for Petri nets, which is now implemented. This infrastruc-
ture summarizes all major features of P3. The central part
of this infrastructure is PNML, since it would be (proba-
bly) a part of the future High-level Petri net standard [20].
P3 can be linked with other Petri net tools though PNML
(e.g., with PIPE), or by using additional XSLTs on
PNML models (DaNAMICS, Renew, and PNK). Also,
P3 has XSLTs for conversions between PNML and
RDF in both directions. Besides, P3 generates SVG by
using XSLT form PNML to SVG. An XSLT is developed
to generate the RDF-annotated SVG from the PNML.
We have also developed the XSLT that transforms
RDF-annotated SVG documents to PNML. This XSLT
is based on the XSLT form RDF to PNML. Hence, we
have XSLTs for conversions between PNML and SVG
in both directions.

Since we use RDF for describing Petri nets, we can use
Protégé tool to create Petri net models. Of course, this is
pretty tedious since Protégé does not have graphical tools
for Petri net modeling. However, some future implemen-
tations can develop this tool in the form of a Protégé’s
plug-in. A good starting point can be the GUI developed
in [34]. A more important feature we obtain from Protégé
is its capability to semantically validate documents con-
taining ontology instances (e.g., RDF documents). In
other words, we can import an RDF document (that
describes a Petri net) into Protégé together with the Petri
net ontology. Then we can validate this RDF document
using the ontology (as well as PAL constraints we pre-
sented in Section 5).

In future P3 implementations, we will provide support
for OWL. It will enable P3 to import/export Petri net mod-
els represented in OWL. These OWL-based Petri net mod-
els can be validated against the Petri net ontology we
defined in Section 6. For that purpose we can also use Prot-
égé and its OWL plug-in (http://protege.stanford.edu/plu-
gins/owl/).

Our Petri net Semantic Web infrastructure understands
the integration of the Petri net ontology with Web Services
that can analyze Petri nets. Currently, we are integrating
the Petri net ontology with the Petri net Web Service
[19]. This Web Service has Web methods that perform a
simulation. The Web Service is based on PNML (its input
and output are represented in PNML). We believe that in
the future there will be many different Petri net Web Servic-
es, which will have different Petri net analysis features.
These Web Services may replace the need to use current
Petri net tools (or some of them, since some Petri net anal-
yses are very time- or space-consuming).

In a hypothetical scenario, a Web Service would under-
stand, for example, that we have a Web-based application
showing a Petri net using the RDF-annotated SVG. When
the user requests a simulation step from the Web applica-
tion, the application first transforms the SVG (i.e., RDF)
format of the Petri net model into PNML. Then it submits
the PNML document to the Web Service that performs the

14 D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx

" PNML

I

I

I

i
XSLT
RDF, OML

XSLT
SVG (with RDF)

I—*. BT -8 Web
\ b | Browser

XSLT
N N

Bidirectional model sharing
using language N

Bidirectional model sharing
using language N with XSLT

XSLT ‘; NAM'CST 3 Analysis
e a I LoO tools
« |
e
XSLT ‘ Platform
PNK for Petr
PNML TO net tools
&
prE— Agent
XSLT R systems
ML Renew) analysis
- @)
=
=
a. @ .
Analysis
PNML PIPE Lo 3 tools
T
Petn net Web
PNML whlelt g
simulation
XSLT (5
Ontology tools
RDF/OWL | {Protégé) }
XSLT
N N

Unidirectional model sharing
using language N

Unidirectional model sharing
using language N with XSLT

Fig. 12. Petri net infrastructure for the Semantic Web (that uses “PNML-based bus” for model sharing): the Petri net ontology, current Petri net tools, P3
tool, Web-based applications, Petri net Web Service, and ontology tools for validation of Petri net documents using the ontology.

simulation. When the simulation is over, the Web Service
sends the new Petri net state (expressed in PNML) to the
Web application. This PNML document is transformed
to the RDF-annotated SVG document, and the Web appli-
cation refreshes its view. In our on-going work, we apply
this usage scenario in a Web-based learning system for
teaching computer architecture and operating systems.

7. Conclusions

The main idea of this paper is that the Petri net ontology
should provide the necessary Petri net infrastructure for the
Semantic Web. The infrastructure understands Petri nets
sharing using XML-based ontology languages (i.e., RDFS
and OWL). The Petri net ontology and Semantic Web lan-
guages do not abandon PNML. On the contrary, we pre-
sented the “PNML-based bus” that takes advantage of
PNML together with the Petri net ontology. That way,
we can exploit potentials of current Petri net tools in the
context of the Semantic Web. We also presented P3, the

Petri net tool that creates ontology-based Petri net models.
Its abbreviated version, its technical description, as well as
a few developed XSLTs can be downloaded from http://
www 15 .brinkster.com/p3net.

The paper gives guidelines for putting Petri nets on
the Semantic Web. It also shows complementary fea-
tures of the Petri net syntax and semantics by the
example of PNML and the Petri net ontology. The
example of RDF-based annotation of SVG documents
indicates how to annotate other XML formats (e.g.,
Web Service Description Language — WSDL). This
opens the door to incorporating ‘“Petri net-driven intel-
ligence” into Web-based applications (e.g., Web Service
composition).

In the future, the P3 tool will support OWL-based anno-
tation of SVG documents with Petri net graphs. Further-
more, we will use this annotation principle to develop a
Petri net Web-based learning environment, as well as to
create Learning Object Metadata (LOM) repositories of
Petri net models.

D. Gasevié, V. Devedzi¢ | Knowledge-Based Systems xxx (2006) xxx—xxx 15

References

[1] K. Backlawski et al., Extending the Unified Modeling Language for
ontology development, International Journal Software and Systems
Modeling 1 (2) (2002) 142-156.

[2] F. Bause, P. Kemper, P. Kritzinger, Abstract Petri net notation, Petri
Net Newsletter 49 (1995) 9-27.

[3] G. Berthelot, J. Vautherin, G. Vidal-Naquet, A syntax for the
description of Petri nets, Petri Net Newsletter 29 (1988) 4-15.

[4]J. Billington et al.,, The Petri Net Markup Language: Concepts,
Technology, and Tools, in: Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets, Eindhoven,
2003, pp. 483-505.

[5] C. Bock, UML without pictures, IEEE Software 20 (5) (2003) 33-35.

[6] E. Breton, J. Bézivin, Towards an understanding of model executa-
bility, in: Proceedings of the International Conference on Formal
Ontology in Information Systems, IEEE Computer Society Press,
Maine, USA, 2001, pp. 70-80.

[7] B. Chandrasekaran, J.R. Josephson, V.R. Benjamins, What are
ontologies, and Why do we need them? IEEE Intelligent Systems 14
(1) (1999) 20-26.

[8] S. Cranefield, Networked Knowledge Representation and Exchange
using UML and RDF, Journal of Digital information 1 (8) (2001)
[Online]. Available from: <http://jodi.ecs.soton.ac.uk>.

[9] V. Devedzi¢, Understanding ontological engineering, Communica-
tions of the ACM 45 (4) (2002) 136-144.

[10] D. Djuri¢, D. Gasevi¢, V. Devedzi¢, Ontology modeling and MDA,
Journal on Object Technology 4 (1) (2005) 109-128.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
Reading, MA, 1995.

[12] D. Gasevi¢, V. Devedzi¢, Software support for teaching Petri nets: P3,
in: Proceedings of the Third IEEE International Conference on
Advanced Learning Technologies, IEEE Computer Society Press,
Athens, Greece, 2003, pp. 300-301.

[13] D. Gasevi¢, Petri net ontology, Ph.D. Thesis, FON - School of
Business Administration, Belgrade, Serbia and Montenegro, 2004.

[14] D. Gasevi¢, D. Djuri¢, V. Devedzi¢, V. Damjanovi¢, Converting
UML to OWL ontologies, in: Proceedings of the 13th International
WWW Conference on Alternate track papers & posters, ACM Press,
NY, USA, 2004, pp. 488-489.

[15] A. G6émez-Pérez, O. Corcho, Ontology languages for the Semantic
Web, IEEE Intelligent Systems 17 (1) (2002) 54-60.

[16] T. Gruber, A translation approach to portable ontology specifica-
tions, Knowledge Acquisition 5 (2) (1993) 199-220.

[17] S. Handschuh, R. Volz, S. Staab, Annotation for the Deep Web,
IEEE Intelligent Systems 18 (5) (2003) 42-48.

[18] K.M. Hansen, Towards a Coloured Petri Net Profile for the Unified
Modeling Language — Issues, Definition, and Implementation,
Internal Center for Object Technology Report COT/2-52, University
of Arhus, Arhus, Denmark [Online]. Available from: <http://
www.daimi.au.dk/~marius/writings/cpn.pdf>, 2001.

[19] M. Havram, D. Gasevi¢, V. Damjanovi¢, A Component-based
Approach to Petri Net Web Service Realization with Usage Case
Study, in: Proceedings of the 10th Workshop Algorithms and Tools
for Petri, Eichstitt, Germany, 2003, pp. 121-130.

[20] ISO/IEC/JTC1/SC7 WG19, New proposal for a standard on Petri net
techniques [Online]. Available: <http://www.daimi.au.dk/PetriNets/
standardisation/>, 2002.

[21] D. Jackson (Ed.), Scalable Vector Graphics (SVG) Specification v1.2,
W3C Working Draft [Online]. Available: <http://www.w3.org/TR/
2003/WD-SVG12-20030715/>, 2003.

[22] M. Jingel, E. Kindler, M. Weber, The Petri Net Markup
Language, in: Proceedings of the Seventh Workshop Algorithms

and Tools for Petri, Universitdt Koblenz-Landau, Germany, 2000,
pp. 47-52.

[23] E. Kindler, M. Weber, The Petri net kernel — an infrastructure for
building Petri net tools, Software Tools for Technology Transfer 3 (4)
(2001) 486-497.

[24] M. Klein, D. Fensel, F. van Harmelen, I. Horrocks, The relation
between ontologies and schema-languages: translating OIL specifica-
tions to XML schema, in: Proceedings of the Workshop on
Applications of Ontologies and Problem-Solving Methods, 14th
European Conference on Artificial Intelligence, Berlin, Germany,
2000.

[25] P. Kogut et al., UML for ontology development, The Knowledge
Engineering Review 17 (1) (2002) 61-64.

[26] O. Kummer, F. Wienberg, The XML File Format of Renew, in:
Meeting report at 21st International Conference on Application and
Theory of Petri Nets, Arhus, Denmark [Online] Available: <http://
www.daimi.au.dk/pn2000/Interchange/-papers/det_04.ps.gz>, 2000.

[27] O. Kummer, F. Wienberg, Renew — the Reference Net Workshop —
Tool Demonstrations, in: Proceedings of the 21st International
Conference on Application and Theory of Petri Nets, Arhus,
Denmark, 2000, pp. 87-89.

[28] O. Kummer, R. Wienberg, M. Duvigneau, Renew - XML Format
Guide [Online]. Available: <http://www.renew.de>, 2001.

[29] J. Miller, J. Mukerji, eds., OMG Document: omg/2003-05-01. MDA
Guide Version 1.0 [Online]. Available: <http://www.omg.org/mda/
mda_filessyMDA_Guide_Version1-0.pdf>, 2003.

[30] T. Murata, Petri nets: properties, analysis and applications, Proceed-
ings of the IEEE 77 (4) (1989) 541-580.

[31] N.F. Noy, M. Sintek, S. Decker, M. Crubézy, R.W. Fergerson, M.A.
Musen, Creating Semantic Web contents with Protégé-2000, IEEE
Intelligent Systems 16 (2) (2001) 60-71.

[32] OMG Document formal/02-04-03, Meta Object Facility (MOF)
Specification v1.4 [Online]. Available: <http://www.omg.org/cgi-bin/
apps/doc?formal/02-04-03.pdf>, 2001.

[33] OMG document formal/03-03-01. OMG Unified Modeling Language
Specification v1.5 [Online]. Available: <http://www.omg.org/cgi-bin/
apps/doc?formal/03-03-01.zip>, 2003.

[34] M. Peleg, 1. Yeh, R. Altman, Modeling biological processes using
Workflow and Petri net models, Bioinformatics 18 (6) (2002) 825—
837.

[35] J. Peterson, Petri Net Theory and the Modeling of Systems, Prentice
Hall, Englewood Cliffs, New Jersey, 1981.

[36] J. Robie, The Syntactic Web — Syntax and Semantics on the Web,
Markup languages: Theory and Practice, MIT Press, Cambridge,
MA, 2001, 411-440.

[37] A. Semenov, A.M. Koelmans, L. Lloyd, A. Yakovlev, Designing an
asynchronous processor using Petri nets, IEEE Micro 17 (2) (1997)
54-64.

[38] P. Strbac, An Approach to Modeling Communication Protocol by
Using Upgraded Petri Nets, Ph.D. Thesis, Department of Computer
Engineering and Informatics, Military academy, Belgrade, Serbia and
Montenegro, 2002.

[39] Y. Sure, R. Studer, A methodology for ontology-based knowledge
management, in: J. Davies, D. Fensel, F. van Harmelen (Eds.),
Towards the Semantic Web — Ontology-driven knowledge manage-
ment, John Wiley & Sons, 2003, pp. 33-46.

[40] S. Bechhofer, et al., OWL Web Ontology Language Reference, W3C
Recommendation. <http://www.w3.0rg/TR/2004/REC-owl-ref-
20040210>, 2004.

[41] M. Weber, E. Kindler, The Petri net kernel, in: Petri Net
Technology for Communication Based Systems, in: H. Ehrig,
W. Reisig, G. Rozenberg, H. Weber (Eds.), Lecture Notes in
Computer Science, vol. 2472, Springer, Berlin, 2003, pp. 109-
124.

	Petri net ontology
	Abstract
	Introduction
	Previous work on Petri net sharing
	The Petri net ontology guidelines
	The Petri net ontology –initial implementation
	OWL-based Petri net ontology
	Ontology-driven Petri net sharing
	Conclusions
	References

