
Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-006-0002-1

REGULAR CONTRIBUTIONS

MDA-based automatic OWL ontology development

Dragan Gašević · Dragan Djurić · Vladan Devedžić

© Springer-Verlag 2006

Abstract This paper presents an eXtensible Stylesheet
Language Transformation (XSLT)-based approach for
automatic generation of the Web Ontology Language
(OWL) from a UML model. Similar solutions that treat
this problem are mostly partial since they do not use full
metamodeling potentials. Although they emphasize the
notion of the use UML for ontology development and
propose necessary transformations into Semantic Web
languages (e.g., RDF Schema, DAML, DAML+OIL),
their UML models must be further refined using ontol-
ogy-specialized tool. None of these approaches enables
instance modeling and generation of OWL ontologies.
In our efforts to make ontological and software engi-
neering techniques closer, we have firstly defined ontol-
ogy metamodeling architecture using Model Driven
Architecture (MDA) concepts. This architecture con-
sists of the Ontology Definition Metamodel defined us-
ing Meta Object Facility (MOF) and based on the OWL,
as well as the related Ontology UML Profile (OUP). A
transformation, that we present here, extends this meta-
modeling architecture and transforms an ontology from

D. Gašević (B)
School of Interactive Arts and Technology,
Simon Fraser University Surrey,
2400 Central City, 10153 King George Hwy.,
Surrey, BC V3T 2W1, Canada
e-mail: dgasevic@acm.org

D. Djurić · V. Devedžić
FON – School of Business Administration,
University of Belgrade, POB 52,
Jove Ilića 154, 11000 Belgrade,
Serbia and Montenegro
e-mail: dragandj@gmail.com

V. Devedžić
e-mail: devedzic@fon.bg.ac.yu

its OUP definition (i.e., XML Metadata Interchange –
XMI) into the OWL description. Accordingly, we illus-
trate how an OUP-developed ontology can be shared
with ontological engineering tools (i.e., Protégé).

Keywords Ontology development · Model Driven
Architecture · UML Profile · OWL · XSLT

1 Introduction

The Semantic Web initiative tries to establish better
semantic connections between different resources on
the Web using AI techniques. Domain ontology is the
most prominent part of this research that should pro-
vide a formal way to represent a conceptualization of
some domain [22]. Accordingly, many ontological lan-
guages are defined within the Semantic Web community.
Most of these languages are XML-based (e.g., SHOE,
OML, RDF Schema – RDFS, DAML, DAML+OIL,
etc.) [21]. Even though Semantic Web languages use
the XML, they have more rigorous foundation closely
related to the well-known AI paradigms (e.g., Descrip-
tion Logic, semantic networks, frames, etc.). Thus, most
of current Semantic Web ontologies are developed in
AI laboratories.

In order to bring ontology development process closer
to wider practitioners’ population, some authors pro-
pose usage of software engineering techniques, espe-
cially the UML since it is the most accepted software
engineering standard [25]. But, the UML is based on
object oriented paradigm, and has some limitation regar-
ding ontology development. However, none of current
solutions to this problem supports full ontology

D. Gašević et al.

definition: definition of non-limited degree of property
hierarchy, modeling ontology instances, mapping multi-
plicity constraints, definition of additional property con-
straints (e.g., a property has a value) as well as inverse
properties. Hence, we can only use the UML in ini-
tial phases of an ontology development. We believe
that these limitations can be overcome by using the
UML’s extensions (i.e., UML profiles) [16], as well as
other OMG’s standards (e.g., Model Driven Architec-
ture–MDA). Additionally, if we want to provide solution
consistent with MDA proposals, we should also support
automatic generation of completely operational ontol-
ogy definitions (e.g., in OWL language) that are model
driven [41]. Since software industry shows an increasing
interest in MDA recently, ontology development may
benefit by having support for state-of-the-art industrial
software engineering efforts.

Accordingly, we have implemented an eXtensible
Stylesheet Language Transformation (XSLT) that trans-
forms the XML Metadata Interchange (XMI) repre-
sentation of a UML Profile (i.e., The Ontology UML
Profile - OUP) into the Web Ontology Language (OWL)
[3]. With this UML’s model transformation we can ex-
tend present UML tools, so that they can be used for full
ontology development without need for other ontolog-
ical tools (e.g., Protégé, OilEd, etc.). This solution is a
part of the GOOD OLD AI research group (http://good-
oldai.org.yu) efforts to develop an ontology metamod-
eling architecture based on the current OMG’s initiative
(i.e., Request for Proposal – RFP) for Ontology Defini-
tion Metamodel (ODM) [36]. The aim of this initiative
is to define a metamodeling architecture for ontology
development.

At this stage, we can say that the proposed solution
is just one step towards enabling MDA-based ontology
development. However, there are still some issues that
can only be resolved empirically in the future, such as:
will diagram based methods be suitable for develop-
ing very large ontologies; and will users familiar with
UML know to develop ontologies even though they
do not have any previous experience in ontology
development.

In Sect. 2 we give an overview of previous work
in transforming UML-based models into ontology lan-
guages. Section 3 presents a formal framework of our
solution – a metamodeling architecture as well as the
OUP. In Sect. 4 we show implementation details, whereas
Sect. 5 illustrates our experiences with XSLT in shar-
ing ontologies between UML tools (i.e., Poseidon for
UML) and ontology development tools (i.e., Protégé),
and gives a comparison of their OWL ontology descrip-
tion. Section 6 further discusses the developed solution

in order to find better application of the MDA standards
in ontology development.

2 Previous work

In this section, we describe existing efforts to enable the
use of the UML, present UML tools, as well as MDA-
based standards in ontological engineering. Our goal is
to explain the formal background of each approach, and
their mappings into ontology languages. In Table 1, we
give an overview of the analyzed solutions, their formal
definition, kinds of model interchange description they
use, proposals for mapping implementation, and target
ontological languages.

The idea to use the UML in ontological engineering
has firstly been in Cranefield’s papers [10]. He has found
connections between the standard UML and ontologies
concepts: classes, relations, properties, inheritance, etc.
However, there are some dissimilarities between them,
and the most important one is related to the property
concept – in the UML an attribute has a class scope,
while in ontology a property is a first-class concept that
can exist independently of a class. This approach sug-
gests using UML class diagrams for development of
ontology taxonomy and relations between ontological
concepts, whereas UML object diagrams were intended
to be used for modeling ontology instances (i.e., body of
knowledge) [8]. In its initial development stage, Crane-
field’s approach used the core UML definition. Also, a
practical software support was provided in the form of
two XSLTs that were developed to enable transforma-
tion of the UML XMI format to RDFS and Java classes.
However, we have noted some limitations (that are also
propagated to generated languages): one cannot con-
clude whether the same property was attached to more
than one class, one cannot create a hierarchy of prop-
erties, the target RDFS ontology description does not
have advanced restriction concepts (e.g., multiplicity).

Baclawski and colleagues have introduced two ap-
proaches for ontology development. The first one
extends the UML metamodel by introducing new meta-
classes [1]. For instance, these classes define a property
as a first class concept, as well as a restriction on a prop-
erty. In this way, they have solved the “property prob-
lem” in the UML. This solution is mainly based on the
DAML+OIL ontology language [26]. In order to en-
able usage of standard UML tools, they propose a UML
profile and its mapping to DAML+OIL. The authors
realized that this solution was fairly awkward because
it introduced some new concepts in the UML meta-
model. Therefore, they have developed an independent

MDA-based automatic OWL ontology development

Table 1 An overview of present UML and MDA based ontology development frameworks and their transformations to the Semantic
Web languages

Approach Metamodel Model description Transformation Generated
mechanism ontology language

Cranefield’s Basic UML UML XMI XSLT RDFS, Java classes
Baclawski et al UML Profile, (not given - UML XMI, – DAML

MOF-based ontology language and MOF XMI can be used)
Falkovych at al Basic UML UML XMI XSLT DAML + OIL
Protégé Protégé metamodel Protégé XMI Programmed OWL, RDF(S),

DAML+OIL, XML,
UML XMI, Protégé XMI, . . .

Basic UML UML XMI
DUET UML profile Rational Rose, ArgoUML Programmed DAML+OIL
Xpetal Basic UML Rational Rose mdl files Programmed RDFS

ontology metamodel by using the Meta-Object Facility
(MOF), which they named the Unified Ontology Lan-
guage (UOL) [2]. This metamodel was also inspired by
the DAML+OIL. We have been unable to find any prac-
tical software solution that would be able to map these
two MDA-based ontology languages into a Semantic
Web language.

Falkovych et al. [17] do not extend the standard UML
metamodel in order to enable transformation of UML
models into equivalent DAML+OIL descriptions. They
use an UML-separated hierarchy to define kinds of
ontology properties. A practical mapping from UML
models to DAML+OIL is implemented by using the
XSLT. The main limitations of this solution are (1) lack
of mechanisms for formal property specification (e.g.,
defining property inheritance, or inverseOf relation be-
tween properties), (2) it is based on UML class diagrams,
which contain only graphical artifacts of real UML ele-
ments included in a model (e.g., they assume all asso-
ciation that has the same name as the same property,
even though each association is a distinct model ele-
ment in the UML). Of course, this diagram problem can
be partly overcome with the XMI for the UML 2.0 that
supports diagram representation.

Protégé is the leading ontological engineering tool
[30]. It has a complex software architecture, easily exten-
sible through plug-ins. Many components that provide
interfaces to other knowledge-based tools (Jess, Arge-
non, OIL, PAL constraint, etc.) have been implemented
in this way, as well as support for different ontology
languages and formats like XML, DAML+OIL (back-
ends), and OIL (tab). In fact, Protégé has a formally
MOF-defined metamodel. This metamodel is extensible
and adaptable. This means, Protégé can be adapted to
support a new ontology language by adding new meta-
classes and metaslots into a Protégé’s ontology. Intro-
duction of these new metamodeling concepts enabled

users to add necessary ontology primitives (e.g., the
Protégé class has different features from the OWL class).
In that way it can, for instance, support RDFS [29] or
OWL (http://protege.stanford.edu/plugins/owl- plugin).
It is especially interesting that Protégé has
backends for the UML and XMI. These two backends
use NetBeans’ MetaData Repository (MDR – http://mdr.
netbeans.org). The first backend exchanges UML mod-
els (i.e., classes, and their relations) using the standard
UML XMI format, while the second one uses the XMI
format that is compliant with the Protégé MOF-defined
metamodel. It is obvious that one can share ontologies
through the Protégé (e.g., import an ontology in the
UML XMI format and store it in the OWL/XML for-
mat). However, Protégé has one limitation in its UML
XMI support – it does not map class relations (i.e., asso-
ciations) into a Protégé’s ontology (i.e., does not attach
instance slots to classes). But, this limitation was ex-
pected since Protégé imports UML models without any
extension (i.e., a UML Profile).

The software tool called DUET (http://codip.grci.
com/Tools/Tools.html), which enables importing DAML
ontologies into Rational Rose and ArgoUML, as well as
exporting UML models into the DAML ontology lan-
guage [18], has been developed in order to support onto-
logical engineering. This tool uses a quite simple UML
Profile that contains stereotypes for modeling ontolo-
gies (based on UML package) and properties (based on
UML class). Additionally, the DUET uses an XSLT that
transforms RDFS ontologies into equivalent DAML on-
tologies. In that way, an RDFS ontology can be imported
into UML tools through the DAML language. Of course,
this tool has constraints similar to approaches we have
discussed so far (e.g., Falkovych et al.) since it has no
ability to define advanced class and property relations
(e.g., inverseOf, equivalent Property, equivalentClass,
etc.). On the other hand, this is the first UML tool

D. Gašević et al.

extension that enables ontology sharing between ontol-
ogy language (i.e., DAML) and a UML tool in both
directions.

Xpetal (http://www.langdale.com.au/styler/-xpetal)
is another tool implemented in Java that transforms
Rational Rose models from the mdl format to RDF
and RDFS. This tool has limitations similar to those
that we have already mentioned while discussing
Cranefield’s software (i.e., XSLT), since it uses the stan-
dard UML and does not provide a convenient solution
for representing properties, their relations, advanced
class restrictions, etc. Actually, this tool is more limited
than Cranefield’s one, since it is oriented to Rational
Rose, in contrast to Cranefield’s XSLT that is applica-
ble to every UML XMI document and independent of
UML tools.

Our opinion is that all these approaches we have
explored above are useful, but none of them gives a full
solution that contains: a formal description of the new
MDA-based ontology language, a related UML pro-
file and necessary transformations between these two
languages, as well as transformations to contemporary
Semantic Web languages (i.e., OWL). We believe that
full usage of the recent OMG’s effort – Model Driven
Architecture (MDA) [27] provides us with considerable
benefits when defining metamodeling architecture and
enables us to develop new languages (i.e., ontology lan-
guage). Actually, there was an RFP for Ontology Defini-
tion Metamodel (ODM) at OMG that should enclose all
these requirements. The four separate ODM proposals
responded to OMG’s ODM RFP [36] submitted by the
following OMG members: IBM [34], Gentleware [33],
DSTC [32], and Sandpiper Software Inc and KSL [37].
However, none of those submissions gave a comprehen-
sive proposal. For example, none of them proposed XMI
bindings for ODM, none of them proposed mappings
between ODM and OWL, only IBM [34] and Gentle-
ware proposed an Ontology UML Profile, etc. Accord-
ingly, the OMG partners decided to join their efforts,
and the current result of their efforts is the ODM joint
submission [31]. So far, the problem of transformations
between MDA-based and ontology languages is not dis-
cussed in the submitted document. Furthermore, there is
no any practical implementation based upon the OMG’s
submission. In order to have such a solution we have
decided to use our proposal for the MDA-based archi-
tecture complying with ODM requirements. We briefly
depict this architecture in Sect. 3, with the main fo-
cus on the UML profile, which can be used in stan-
dard UML tools. On top of that architecture we present
the first practical implementation of the transformation
between an ODM-based UML Profile and the OWL
language.

3 Formal framework of our solution

MDA and its four-layer architecture provide a solid basis
for defining metamodels of any modeling language, so
it was a straight choice to define an ontology-modeling
language in MOF. Such a language can profit from MDA’s
support in modeling tools, model management and inter-
operability with other MOF-defined metamodels. Pres-
ent software tools do not implement many of the MDA
basic concepts [20]. However, most of these applications,
currently primarily oriented toward the UML and M1
(i.e., model) layer, are expected to be enhanced in the
next few years to support MDA.

3.1 Ontology metamodeling architecture

Currently, there is an initiative (i.e., RFP) within the
OMG aiming to define a suitable language for model-
ing Semantic Web ontology languages in the context of
MDA [27]. According to this RFP, we present our pro-
posal of such architecture. In this approach to ontology
modeling in the scope of MDA, which is shown in Fig. 1,
several specifications should be defined:

• Ontology Definition Metamodel (ODM).
• Ontology UML Profile (OUP) – a UML Profile that

supports UML notation for ontology definition.
• Two-way mappings between OWL and ODM, ODM

and Ontology UML Profile and from Ontology UML
Profile to other UML profiles.

ODM should be designed to enclose common ontology
concepts. A good starting point for ODM construction
is OWL since it is the result of the evolution of exist-
ing ontology representation languages, and is going to
be W3C’s recommendation. It is at the Logical layer of
the Semantic Web [4], on top of RDF Schema (Schema
layer). In order to make use of graphical modeling capa-
bilities of the UML, ODM should have a corresponding
UML Profile [42]. This profile enables graphical edit-
ing of ontologies using UML diagrams as well as other
benefits resulting from the use of mature UML CASE
tools. Both UML and ODM models are serialized in
the XMI format, so that the two-way transformation
between them can be done using XSLT. OWL also has
representation in the XML format, so another pair of
XSLTs should be provided for the two-way mapping
between ODM and OWL. For mapping from the Ontol-
ogy UML Profile into other, technology-specific UML
Profiles, additional transformations can be added to sup-
port the use of ontologies in the design of other domains
and vice versa.

MDA-based automatic OWL ontology development

Fig. 1 Ontology modeling in
the context of MDA and the
Semantic Web

Table 2 A brief description of basic MOF and RDF(S) metamodeling constructs

MOF element Short description RDF(S) element Short description

ModelElement ModelElement classifies the rdfs:Resource Represents all things
elementary, atomic constructs of described by RDF. Root
models. It is the root element within construct of majority
the MOF Model of RDF constructs

DataType Models primitive data, external types, rdfs:Datatype Mechanism for grouping
etc. primitive data

Class Defines a classification over a set of rdfs:Class Provides an abstraction
object instances by defining the state mechanism for grouping
and behavior they exhibit. similar resources

Classifier Abstract concept that defines In RDF(S), rdfs:Class
classification. It is specialized by also have function that is similar
Class, DataType, etc. to a MOF concept of Classifier

Association Expresses relationships in the rdf:Property Defines relation between
metamodel between pairs of instances subject resources and
of Class object resources

Attribute Defines a notional slot or value holder,
typically in each instance of its Class

TypedElement The TypedElement is an element that In RDF(S), any
requires a type as part of its definition. rdfs:Resource can be
A TypedElement does not itself typed (via the rdf:type
define a type, but is associated with a property) by some
Classifier. Examples are object rdfs:Class
instances, data values etc.

Firstly, we defined ODM using MOF. A brief compar-
ative description of the most important metamodeling
constructs in MOF and RDF(S), is shown in Table 2. A
detailed description of MOF can be found in the OMG’s
MOF specification document [35]. RDF, RDFS and their
concepts are described in detail in W3C documents [7].
ODM gives us a metamodel-based semantic foundation
[40] for ontology languages, so that we can use MDA’s
capabilities for ontology development. But, if we want to
use standard CASE tools for ontology development we
need a UML Profile whose formal semantic is in accor-

dance with ODM. Thus, in Sect. 3.2, we briefly outline
the ODM-based UML Profile – OUP.

3.2 Ontology UML profile: source language

The basic UML constructs (model elements) can be cus-
tomized and extended with new semantics using four
UML extension mechanisms defined in the UML Spec-
ification [38]: stereotypes, tag definitions, tagged values,
and constraints. Stereotypes enable defining virtual sub-

D. Gašević et al.

Fig. 2 Class-oriented stereotypes of the Ontology UML profile: An excerpt of the Wine ontology

classes of UML metaclasses, assigning them additional
semantics. Here, we briefly outline OUP, whereas its
details are given in [15].

In development of our Ontology UML Profile, we
used experiences of other UML Profile designers (e.g.,
see [23]). Applying those experiences to our case, we
wanted our OUP to:

• Offer stereotypes and tags for all recurring ontology
design elements, such as classes, individuals, proper-
ties, complements, unions, and the like.

• Make specific ontology modeling and design ele-
ments easy to represent in UML diagrams produced
by standard CASE tools, thus keeping track of ontol-
ogy information in UML models.

• Enable encapsulating ontological knowledge in an
easy-to-read format and offer it to software engi-
neers.

• Make possible evaluation of ontology UML dia-
grams that would indicate possible inconsistencies.

• Support ODM, hence be able to represent all ODM
concepts.

Class is one of the most fundamental concepts in ODM
and OUP. There are some differences between tradi-
tional UML Class or OO programming language Class
concept and ontology class as it is defined in OWL
(owl:Class). In ODM, Ontology Class concept is
represented as an instance of MOF Class, and has
several concrete species, according to the class descrip-
tion: Class, Enumeration, Union, Intersection,
Complement, Restriction and AllDifferent.
These constructs in OUP are all inherited from the UML
concept that is most similar to them, UML Class. But,
we must explicitly specify that they are not the same as
UML Class, which we can do by using UML stereo-

types. In Fig. 2, we show a part of the well-known Wine
ontology. WineDescriptor is equivalent to the union
of classesWineTaste andWineColor, whereasWine-
Color is an enumeration of WineColor instances:
White, Rose, and Red. We should note that we have
two anonymous classes (Union and Enumeration).
That means that these classes are defined through other
classes (e.g., anonymous Enumeration is defined in
the class WineColor) and cannot be used out of their
definitions. We use the tag value odm.anonymous with
a value true, to mark anonymous classes. The users have
to manually attach this tagged value to anonymous clas-
ses. This helps us differentiate between anonymous and
non-anonymous classes in automatic transformation of
OUP models.

In UML, an instance of a Class is an Object. ODM
Individual and UMLObjecthave some differences,
but they are similar enough, so in the OUP,Individual
is modeled as UML Object, which is shown in Fig. 2.
Here, we had difficulties with decision which stereo-
type to attach to UML’s objects to make them represent
ODM’s individuals. It would be natural to have a ste-
reotype with the name �Individual�, but UML’s
specification [38] explicitly prompts that the stereotype
for an object must match the stereotype for its class.
Accordingly, in OUP we have attached the
�OntClass� stereotype to OUP’s instances.

Since Property is a stand-alone concept it can be
modeled using a stand-alone concept in UML. That
concept could be UML Class’ stereotype
�Property�. However, Property must be able to
represent relationships between Resources (Clas-
ses, Datatypes, etc. in the case of UML), which UML
Class alone is not able to do. ODM defines two types
(subclasses) of Property–ObjectProperty and
DatatypeProperty. ObjectProperty, which can

MDA-based automatic OWL ontology development

Fig. 3 The OUP class property and restriction on the example of the Wine ontology

have only Individuals in its range and domain, is
represented in OUP as Class’ stereotype
�ObjectProperty�.DatatypeProperty is mode-
led withClass’ stereotype �DatatypeProperty�.
An example of a Class Diagram that depicts ontology
properties modeled in the UML is shown in Fig. 3.
Tagged values describe additional characteristics of
�ObjectProperty�: symmetric, transitive, func-
tional,and inverseFunctional.

In OUP we use the �Restriction� stereotype to
refine a property’s restrictions. As a result we have an
association (e.g., stereotype �someValues From�)
between a class and an unnamed �Restriction�,
and two stereotyped dependencies from �Restric-
tion�– �onProperty�, and e.g., �someValues
From� (but stereotypes �hasValue� and �all-
ValuesFrom� can also be used). However, adding
this �Restriction� construct in OUP is not the
same as adding a class into property domain. Actu-
ally, it is mapped as a super class for the given class
(i.e., the class Wine). Fig. 3 depicts a class’ restriction
on a property – the Wine’s �ObjectProperty� lo-
catedIn has a someValuesFrom restriction the �Ont-
Class� Region. Association stereotype �domain�
defines a property domain, while Association stereotype
�range� defines a property range. An additional res-
triction is its multiplicity (i.e., how many property in-
stances can be attached to a class).

ODM Statement is a concept that represents con-
crete links between ODM instances – Individuals
and DataValues. In the UML, this is done through
Link (an instance of an Association) or Attrib-
uteLink (an instance of an Attribute.

Since in the UML Class’ instance is an Object, in
OUP,Statement is modeled withObject’s stereotype
�ObjectProperty� or �DatatypeProperty�.

UML Links are used to represent the subject and the
object of a Statement. To indicate that a Link is the
subject of aStatement,LinkEnd’s stereotype �sub-
ject� is used, while the object of the Statement
is indicated with LinkEnd’s stereotype �object�.
LinkEnd’s stereotype is used because in UML Link
can not have a stereotype. These Links are actually in-
stances of properties �domain� and �range�. In
brief, in OUP, Statement is represented as an Object
with twoLinks – the subjectLink and the objectLink,
which is shown in Fig. 4. Here, we have a statement
that says the Region’s instance MendocinoRegion is
locatedIn SonomaRegion, and its adjacentRe-
gion is CaliforniaRegion. Unlike other analyzed
MDA-based solutions for ontology development, ODM
and OUP support modeling of body of knowledge (i.e.,
class instances) [8].

4 Overview of our solution: XSLT

In Sect. 3, we have explained MDA-based languages for
ontological engineering. The main idea of having a UML
profile for ontology development is to use present UML
tools. In fact, current UML tools (e.g., Rational Rose,
Poseidon for UML) mainly support the XMI standard
[39] – MDA’s XML-based standard for sharing meta-
metamodels, metamodels, and models. Since this format
is XML-defined, one can employ XSLT to transform
XMI documents into target documents that are not nec-
essarily XML documents. These target documents can
be written in some ontology language, e.g., OWL. On the
other hand, when we use an approach based on XSLT
(XSLT principle) we do not need to change a UML tool,
instead we just apply an XSLT on an output document

D. Gašević et al.

Fig. 4 OUP fully supports ontology body of knowledge (i.e., instances) through OUP statements: the Wine ontology example

Fig. 5 The applied XSLT
principle: an extension of
present UML tools for
ontology development

of the UML tool. Accordingly, we can use well-defined
XML/XSLT procedure that is shown in Fig. 5.

A UML tool (e.g., Poseidon for UML) can export
an XMI document that an XSLT processor (e.g., Xalan
– http://xml.apache.org) can use as the input. An OWL
document is produced as the output, and this format can
be imported into a tool specialized for ontology devel-
opment (e.g., Protégé), where it can be further refined.
On the other hand, since we obtain an OWL document,
we do not need to use any ontology tool, instead we
are able to use this ontology description as a final OWL
ontology.

The XSLT, which we have implemented for mapping
from XMI (OUP-based) format to the OWL XML
description, contains a set of rules (i.e., templates) that
match XMI constructs and transform them into equiva-
lent OWL primitives. While developing these rules, we
had to face some serious obstacles resulting from evi-
dent differences between the source and target formats.
We note some of them:

• The structure of an XMI document is fairly awkward
since it contains full description of a UML model.

For example, classes, attributes, relations (associa-
tions, dependencies, generalization), stereotype des-
criptions, etc.

• OUP, in some cases, uses more than one UML con-
struct to model one OWL element. For example, to
model someValesFrom restriction using OUP (see
Fig. 3), we need three UML classes and three rela-
tions (i.e., one association and two dependencies).
It is especially difficult because each UML construct
has a different stereotype.

• UML tools can only draw UML models, but they
do not have an ability to check the completeness of
an OUP ontology. Thus, the XSLT is used to check
XMI documents. This is the only way to avoid gen-
eration of OWL ontologies with some incomplete
parts (e.g., the attribute name of the property owl:on-
Property in a class restriction is empty) if the input
XMI document contains an incomplete UML model
according to the OUP definition (e.g., there is no ste-
reotyped dependency � onProperty� between a
restriction and a property).

• The XSLT must differentiate between classes that
are defined in other classes (and can not be refer-

MDA-based automatic OWL ontology development

<xsl:template name="ObjectProperty">

<xsl:variable name="range">
<xsl:text>Class</xsl:text>

</xsl:variable>

<xsl:variable name="classID" select="./@xmi.id"/>

<xsl:element name="owl:ObjectProperty">
<xsl:attribute name="rdf:ID">

<xsl:value-of select="./@name"/>
</xsl:attribute>

<xsl:call-template name="classDepedencyStereotype">
<xsl:with-param name="stereotype">

<xsl:text>equivalentProperty</xsl:text>
</xsl:with-param>

</xsl:call-template>

<xsl:call-template name="taggedValues"/>

<xsl:call-template name="generalization">
<xsl:with-param name="generalizationKind">

<xsl:text>rdfs:subPropertyOf</xsl:text>
</xsl:with-param>

</xsl:call-template>

<xsl:call-template name="classDepedencyStereotype">
<xsl:with-param name="stereotype">

<xsl:text>inverseOf</xsl:text>
</xsl:with-param>

</xsl:call-template>

<xsl:call-template name="attributeDomainRange"/>

<xsl:call-template name="associationDomainRange">
<xsl:with-param name="range" select="$range"/>

</xsl:call-template>
</xsl:element>

</xsl:template>

Listing 1 The XSLT’s template that generates OWL object prop-
erties form an OUP model

enced from other classes using their ID), and classes
that can be referred to using their ID. Accordingly,
we included into OUP odm.anonymous tagged val-
ues that help us detect these two cases.

Taking into account previously presented facts, one can
deduce that the developed XSLT is too large to be in-
cluded in this paper. Therefore, we only give a part of it
in Listing 1.

This listing illustrates the XSLT ObjectProperty tem-
plate responsible for processing OUP’s �ObjectProp-
erty� stereotypes. The template is called from a tem-
plate that matches XMI tags for the UML’s class, but
only when a matched class has attached the �Object-
Property� stereotype. �ObjectProperty� out-
puts the owl:ObjectProperty XML tag, and calls
templates responsible for transformation of the follow-

ing elements: equivalent properties (dependency ste-
reotype), attached tagged values that describe property
type (i.e., symmetric, transitive, functional, and inverse
functional), super properties (generalization), inverse
properties, and property domain and range. In order to
depict an output OWL document that we obtain as the
XSLT’s result, we give Listing 2.

Listing 2a gives OWL classes we have defined in
Fig. 2. It is interesting to note how OUP’s classes that
have tagged value odm.anonymous are mapped into
OWL (e.g., WineDescriptor has an equivalent anon-
ymous class that is defined as a union of the WineTaste
and WineColor classes). In Listing 2b, we show the
OWL description for the locatedIn property, which
has the Region class as its range, and both the Region
and Wine classes as its domain. On the other hand,
the Wine class additionally restricts this property us-
ing the OWL’s someValuesFrom restriction. Since OUP
has a full support for OWL’s statements we are able to
transform them into equivalent OWL’s constructs (i.e.,
full individual descriptions). Listing 2c contains OWL
instances defined as statements’ parts in Fig. 4. This
feature empowers our solution to generate both ontol-
ogy armature [13] (classes, properties, etc) and ontology
instances (body of knowledge) [8]. This feature is not
supported in other MDA-based proposals for ontology
development. Of course, we should note that Listing 2 is
only a part of the OWL description of the Wine ontology
that is obtained by performing the XSLT. In Sect. 5, we
outline our first practical experience with this solution.

5 Experiences

We have already noted that the developed solution acts
as an extension for standard UML tools, and thus en-
ables us to create complete OWL ontologies without
need to use ontology-specialized development tools. In
order to accomplish a real practical use of the OUP and
the developed XSLT, we should use an adequate UML
tool that supports:

• Attaching stereotypes to all UML concepts that we
have in OUP. For instance, present UML tools rarely
allow objects and link ends to have a stereotype.

• A convenient way to use tagged values and attach
them to each UML element.

• Making relations between UML concepts, as those
shown in Fig. 2. We especially emphasize the impor-
tance of relations (e.g., dependency) between a UML
class and a UML object. This kind of relation is reg-
ular in the UML syntax, and can be represented on

D. Gašević et al.

<owl:ObjectProperty rdf:ID="locatedIn">
<rdfs:range rdf:resource="#Region"/>
<rdfs:domain rdf:resource="#Wine"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Wine">
<!-- ... -->
<rdfs:subClassOf rdf:resource="#PotableLiquid"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:someValuesFrom
rdf:resource="#Region"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
b)

<owl:Class rdf:ID="WineDescriptor">
<owl:equivalentClass>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#WineTaste"/>
<owl:Class rdf:about="#WineColor"/>

</owl:unionOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:ID="WineTaste">
<rdfs:subClassOf rdf:resource="#WineDescriptor"/>

</owl:Class>

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor"/>
<owl:equivalentClass>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">

<WineColor rdf:about="#Red"/>
<WineColor rdf:about="#Rose"/>
<WineColor rdf:about="#White"/>

</owl:oneOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

<Region rdf:ID="SonomaRegion"/>
<Region rdf:ID="CaliforniaRegion"/>
<Region rdf:ID="MendocinoRegion">

<locatedIn rdf:resource="#SonomaRegion"/>
<adjacentRegion rdf:resource="#CaliforniaRegion"/>

</Region>

a) c)

Listing 2 Resulting OWL description: a classes generated for the OUP model from Fig. 2; b Object property OWL descriptors for the
model from Fig. 3 c OWL statements generated from Fig. 4

class diagrams (that are also called static structure
diagrams in the UML specification [38]).

• The XMI standard for serialization of UML models.

We have analyzed two UML tools: IBM/Rational Rose
(a leading UML tool – http://www.rational.com), and
Poseidon for UML (http://www.gentleware.com). We
have decided to use Poseidon for UML since it supports
all requirements we have mentioned above, unlike the
IBM/Rational Rose that does not provide support for
most of them (e.g., object can not have a stereotype, or a
class and an object can not be related using any UML’s
relation). Additionally, Poseidon for UML is suitable
since it uses NetBeans’ MDR (http://mdr.netbeans.org)
repository for MOF-compliant metamodel storing, and
the MOF definition itself. This is important feature be-
cause the usage of model repositories enables us to ben-
efit from all MDA’s advantages [6]. From the historical
point of view, this tool also has a closer applicability in
ontological engineering, since it is a UML tool recom-
mended to be used with Protégé’s UML backend for
importing UML models.

The second important decision is how to generate
OWL description since the same OWL definition (e.g.,

OWL class) can be generated in more than one way (e.g.,
an OWL class can be defined using an unnamed class as
either equivalent class or subclass). We decide to gener-
ate OWL ontologies in the fashion similar to Protégé’s
OWL plugin. Hence, we have managed to provide an
additional way to import Poseidon’s models into Protégé
through the OWL. Of course, since Protégé has more
advanced features for ontology development, an OUP-
defined ontology can be further improved and refined.

We have tested our solution on the well-known exam-
ple of the Wine ontology [28]. Firstly, we represented this
ontology in Poseidon using OUP. Parts of this ontology
are used in Sect. 4 in order to illustrate OUP (e.g., Figs. 2,
3). Then, we exported this extended UML into XMI, and
after performing the XSLT, we obtained an OWL docu-
ment. Finally, we imported this document into Protégé
using its OWL plugin. A screenshot that depicts a part
of this imported OWL ontology is shown in Fig. 6.

We have to admit that we have found certain differ-
ence between OWL generated by the XSLT and OWL
produced by Protégé. That difference was detected in
representation of OWL’s individuals. To represent indi-
viduals Protégé uses owl:Thing with the attribute
rdf:type that refers to its type (i.e., its OWL class).

MDA-based automatic OWL ontology development

Fig. 6 An example of generated OWL ontology from the OUP, and imported into Protégé: Wine ontology

For example, Red is instance of the WineColor class,
and it is represented as follows:

<owl:Thing rdf:ID=“Red”
rdf:type=“#WineColor”/>

In our solution an individual is represented by a tag
that has the same name as the name of its OWL class.
For example, the same Red instance is represented as
follows:

<WineColor rdf:ID=“Red”/>.

We found this difference unimportant since Protégé is
able to recognize OWL instances defined in both forms.

The current XSLT version has a limitation, since it
does not support packages (i.e., the OUP ontology).
This means, it is unable to produce more than one OWL
document (i.e., ontology). Actually, the OUP supports
multiple ontologies within the same XMI project, but
the XSLT standard and XSLT processors introduce this
limitation. Of course, this can be overcome by using
some non-standard XSLT primitives (i.e., XSLT exten-
sions) that enable producing multiple documents from
one source XML document (e.g., SAXON XSLT pro-
cessor and its XSLT extensions).

We have so far developed two ontologies using the
OUP that we later transformed in OWL using the XSLT.
These two ontologies are: the ontology of saints and phi-

losophers and the Petri net ontology. The first ontology
was developed using Porphyry’s tree method – start-
ing from Porphyry’s tree schema, performing forward
classification, and establishing the class hierarchy. This
ontology has a theological and philosophical character,
but also contains a multimedia part that semantically
annotates a collection of pictures collection (icons) [11].
The Petri net ontology was developed in order to pro-
vide the Semantic Web support for Petri nets [19].

6 Discussion

In order to further analyze the proposed solution, we
compare our Ontology UML Profile with the UML Pro-
file proposed in [1] (the most similar approach). We also
indicate the status of the implemented transformations
in context of the ongoing OMG initiative for ontology
development.

6.1 Ontology UML profile

We can say that both ODM and OUP used in this paper
are mostly related to the work of Baclawski et al. [1].
Here, we give a difference between our OUP and Ba-
clawski’s UML profile on the example of a restriction.
In Fig. 7a, we show how restriction on property locat-

D. Gašević et al.

Fig. 7 Definition of locatedIn property for the class Wine represented in: a Becklawski’s UML profile, b Ontology UML Profile

Fig. 8 The Wine class and cardinality definition for the property hasFlavor: a OUP definition b OWL definition

edIn is defined using the Baclawski’s UML profile and
in Fig. 7b, we present how it would be defined by using
OUP (also shown in Fig. 3). This example is taken from
the well-known Wine ontology.

In OUP, we have «domain» association
stereotype to attach domain classes to a property. For
property range, we use a directed association stereo-
type «range», while in Baclawski’s UML profile, they
use an unnamed «Restriction» stereotype that has
two associations: toClass and onProperty. In OUP,
we use the «Restriction» stereotype additionally to
refine restriction on a property for some class. In that
case, we have an association (e.g., stereotype «some-
ValuesFrom») from a class to an unnamed«Restric-
tion», and two stereotyped dependencies from
«Restriction»– «on Property», and e.g.,
«allValuesFrom» (but, here also can be used stereo-
types«hasValue»,«someValuseFrom»). It is impor-
tant to note that having this «Restriction» construct
in OUP does not mean adding a class into property do-
main. Actually, it is mapped as a super class for a given
class in the way shown in Listing 2b.

In addition, we need a way to change parent class mul-
tiplicity for a property in its inherited classes. This is not
precisely defined in Baclawski’s UML Profile. In OUP,
we use another association stereotype «cardinal-
ity» between an «OntClass», which we additionally
want to restrict, and the stereotype «Restriction».

Multiplicity defined on the «Restriction» side is a
new cardinality. Further, «Restriction» is related
with a property through a dependency stereotype «on-
Property». Fig. 8a illustrates an example of a cardi-
nality restriction for the class Wine and on the property
hasFlavor. Also it gives an equivalent OWL definition
(see Fig. 8b).

Of course, one important question naturally rises:
Why do we need a UML Profile for ontology modeling?
Having in mind the fact that ontologies are a very dy-
namic category evolving continuously, it is very impor-
tant for developers to have an intuitive way to present
ontology artifacts. According to one of the most com-
prehensive and referred ontology tool surveys [12], it is
obvious that many ontology tools take into account this
fact by providing different graphical notations to repre-
sent ontologies. For example, Protégé, the most popular
ontology editor, has some plug-ins for graphical rep-
resentation of ontologies (e.g., OntoViz, TGViz). The
same practice is continued in Protégé’s support for OWL
where there is a plug-in called ezOWL (http://iweb.etri.
re.kr/ezowl) that uses a UML-like graphical notation
for OWL ontologies. However, it is important to note
that the use of some standard graphical software nota-
tions (e.g., ER diagrams and UML) is very common in
many ontology tools (DUET, Visual Ontology Modeler,
ICOM, KBE, etc.) [12]. On the other hand, one more
important question is: Do we really need a UML Profile

MDA-based automatic OWL ontology development

Fig. 9 Relations between
implemented solution and
recommended
transformations in OMG’s
Request for Proposals

for ontologies when we already have Protégé? Although
this question may sound quite reasonable, the fact is that
UML tools such as Rational Rose have many advanta-
ges: availability of literature, courses, examples, know-
how tutorials, industrial support, etc. Of course, one can
strength Protégé to have more advanced features than
some UML tools, but using well-known modeling stan-
dards is still an argument for having UML profiles for
ontologies.

6.2 Transformation

One very important remark is that the proposed
XSLT transformation, in fact, is not a part of OMG’s
RFP for Ontology definition metamodel [36]. This doc-
ument presumes transformations between ODM and
OUP, as well as transformations between ODM and
OWL (see Fig. 9). This means, if one wants to trans-
form an OUP-defined ontology into OWL, that ontology
should firstly be transformed into ODM, and
subsequently from ODM to OWL. Of course, it is also
possible to implement all using XSLT because all ontol-
ogy representations use the XML: ODM uses the XMI
format – a MOF-defined metamodel, OUP uses the
UML XMI format, and OWL has an XML-based rep-
resentation. Our transformation from OUP to OWL is
practical extension of present UML tools that gives them
capability to be used for full development of ontology
described by a real Semantic Web language. It is a kind of
a bridge between ontological and software engineering,
since current MDA-compliant implementations are in
very immature stage. Actually, MDA is still supported
only with UML tools designed for UML modeling at
the M1 layer of the MDA [20]. Development of these
ODM↔OUP and ODM↔OWL transformations is cur-
rently our primary activity.

Transformations from OUP to ODM, and from ODM
to OWL offer the following advantages:

• When one wants to support a new ontology language
(e.g., DAML+OIL) using the ODM-based princi-
ple, only a pair of transformations should be imple-
mented: from a new language to ODM, and from
ODM to a new language. In the case we want to
support transformations between N different lan-
guages (like the OUP and OWL are), then it is nec-
essary to implement 2N transformations. But, when
we implement transformations between each pair of
ontology languages without ODM (e.g., OWL and
DAML+OIL) then we need N2 transformations.

• Since we should transform all ontologies through
ODM, we can validate an ontology against the ontol-
ogy metamodel (i.e., ODM). In this way, we are capa-
ble to prevent transformation of an invalid ontology
or to alert when an ontology is inconsistent. This
is similar to relations between EBNF notation most
commonly used for defining programming grammars
and concrete programming languages [5]. In terms
of EBNF, we can check a validity of a program writ-
ten in a programming language (e.g., Java) against
the EBNF-based grammar of that programming lan-
guage when parsing the program. Trying to make
relations with EBNF we can say that a metamod-
el (e.g., ODM) is equivalent to an EBNF grammar,
while a concrete model (e.g., ontology) is equivalent
to a program.

Our transformation mechanism is similar to the ideas
given in Bézivin’s paper [5] that propose metamodel-
based model transformations and implementation of
transformations using the XSLT. Here, we have different
metamodels (i.e., OWL, OUP metamodel). However,
ODM serves as an integration point that decreases the
number of needed transformations. Also, we can prove
usefulness of having a central metamodel for some area,
which, in this case, is ODM.

Note that the model sharing principle illustrated in
Fig. 9 is closely related to a well-proven, general knowl-
edge-sharing mechanism that has already been used in

D. Gašević et al.

other approaches. For example, Generic Frame Proto-
col (GFP) was proposed and developed by SRI Interna-
tional and Stanford University long before the concepts
of XML and XSLT were established, in order to pro-
vide generic model for frame representation and, in
fact, generic interface to different frame representation
systems (FRS) [24]. Essentially, GFP provided generic
knowledge-base functions for representing and manip-
ulating knowledge in FRS, and a translation layer be-
tween these functions and existing FRS-specific func-
tional interfaces. The role analogous to that of XSLT
in our case was given to a set of translators provided
by FRS developers – these translators ensured transla-
tion between FRS-specific representation languages and
the language of the GFP. GFP has later evolved into
the Open Knowledge Base Connectivity (OKBC) stan-
dard application-programming interface (implemented
in several different languages) for accessing knowledge
bases stored in different knowledge representation sys-
tems [9].

Another feature can be introduced in this approach,
since we have a formal metamodeling specification for
ontology development, defined by MOF. That means
MDA-based repositories can be used for storing meta-
models and models. If we use present MDA-based repos-
itories, we can produce Java Metadata Interface (JMI)
[14] compliant code, and thus obtain a possibility to
incorporate a programming logic into Java applications.
The JMI Specification defines a Java-based program-
ming interface for manipulating MOF-based models and
metamodels. JMI also enables generation of program-
ming interfaces based on such models. This feature can
be used for both ODM and OUP compliant models,
since they both are defined using MOF (UOP is also
defined using MOF because it is a UML extension).
Accordingly, we have implemented a solution for ontol-
ogy development that uses the MDR – a NetBeans’
repository and can produce JMI.

7 Conclusions

In this paper, we have shown a practical realization of
the UML tool extension for development of real Seman-
tic Web ontologies. This extension is implemented in
XSLT. Actually, the implemented XSLT transforms an
ontology described by the Ontology UML Profile (XMI)
into the W3C’s Semantic Web language OWL (XML).
The used Ontology UML Profile, and the developed
XSLT are part of our efforts to develop a software
engineering platform for ontology development, which
will be in accordance with the OMG’s RFP for Ontol-
ogy Definition Metamodel [36]. Unlike previous simi-

lar solutions, our implementation produces an ontology
that does not need to be additionally refined by ontology
development tools. We recommend (but, do not limit
because the solution is based on the UML XMI stan-
dard) using this XSLT together with the Poseidon for
UML, since it supports all UML concepts necessary for
the Ontology UML Profile. Generated OWL ontologies
have a similar look to ontologies produced by Protégé’s
OWL plugin.

We hope that this solution can be useful to all software
engineering practitioners who participate in an ontology
development process. Using the well-known UML syn-
tax, the practitioners do not need to learn how to use
ontology tools. Also, we hope that this work can be use-
ful practical contribution to the OMG’s efforts in finding
a suitable MDA-based technique for the Semantic Web
ontologies that will bring ontology development process
closer to software engineers.

In the future, we are planning to improve the current
implementation, so that it can support development of
multiple ontologies (using UML’s packages), and show
how the Ontology UML Profile can be used for modu-
lar ontology development (on the example of the Petri
net ontology and Petri net dialects). Also, we will finish
our current work aimed at providing support for trans-
formations between the Ontology UML Profile (UML
XMI-based) and the Ontology Definition Metamodel
(MOF XMI-based), as well as between the OWL and
the Ontology Definition Metamodel. In this way, we
will have an entire metamodeling platform compliant to
the OMG’s ontology initiative.

References

1. Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J., Let-
kowski, J., Emery, P.: Extending the Unified Modeling Lan-
guage for ontology development. Int J Softw. Syst. Modeling
1(2), 142–156 (2002)

2. Baclawski, K., Kokar, M., Smith, J., Wallace, E., Letkowski,
J., Koethe, M., Kogut, P.: UOL: Unified Ontology Language.
Assorted papers discussed at the DC Ontology SIG meeting
http://www.omg.org/cgi-bin/doc?ontology/2002-11-02 (2002)

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks,
I., McGuinness, D., Patel-Schneider, P., Stein, L.: OWL
Web Ontology Language Reference. W3C recommendation
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ (2004)

4. Berners-Lee, T.: Weaving the Web. Orion Business Books,
London (1999)

5. Bézivin, J.: From Object Composition to Model Transfor-
mation with the MDA. In: Proceedings of the 39th Interna-
tional Conference and Exhibition on Technology of Object-
Oriented Languages and Systems, Santa Barbara, USA, pp.
350–355 (2001)

6. Bock, C.: UML without pictures. IEEE Software 20(5), 33–35
(2003)

MDA-based automatic OWL ontology development

7. Brickley, D., Guha, R.: (eds.) Resource Description Frame-
work (RDF) Schema Specification 1.0. W3C Candi-
date Recommendation http://www.w3.org/TR/2000/CR-rdf-
schema-20000327 (2000)

8. Chandrasekaran, B., Josephson, J., Benjamins, R.: What are
ontologies, and why do we need them?. IEEE Intell. Syst.
14(1), 20–26 (1999)

9. Chaudhri, V., Farquhar, A., Fikes, R., Karp, P., Rice, J.: OKBC:
A programmatic foundation for knowledge base interopera-
bility. In: Proceedings of the 15th National Conference on
Artificial Intelligence, Madison, Wisconsin, USA, pp. 600–607
(1998)

10. Cranefield, S.: Networked knowledge representation and
Exchange using UML and RDF. J. Digi. inf. 1(8)
http://jodi.ecs.soton.ac.uk (2001)

11. Damjanović, V.: Semantic Web, Ontologies, and Agents. Hon-
ors degree thesis, University of Belgrade, Serbia and Monte-
negro (2003)

12. Denny, M.: Ontology Tools Survey, Revisited http://www.
xml.com/lpt/a/2004/07/14/onto.html (2004)

13. Devedžić, V.: Understanding Ontological Engineering. Com-
munications of the ACM 45(4), 136–144 (2002)

14. Dirckze, R. (ed.) Java Metadata Interface (JMI) Speci-
fication Version 1.0 http://jcp.org/aboutJava/communitypro-
cess/final/jsr040/index.html (2002)

15. Djurić, D., Gašević, D., Devedžić, V.: Ontology modeling and
MDA. J. Object Techno. 4(1) 109–129 (2005)

16. Duddy, K.: UML2 must enable a family of languages. Com-
mun. ACM 45(11), 73–75 (2002)

17. Falkovych, K., Sabou, M., Stuckenschmidt, H.: UML for the
semantic web: Transformation-based approaches. In: Ome-
layenko B, Klein M (eds.) Knowledge Transformation for the
Semantic Web. Frontiers in Artificial Intelligence and Appli-
cations 95, IOS Press, Amsterdam, The Netherlands, pp. 92–
106 (2003)

18. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.,
Patel-Schneider, P.: OIL: An Ontology Infrastructure for the
semantic web. IEEE Intell. Syst. 16(2), 38–45 (2001)

19. Gašević, D., Devedžić, V.: Reusing petri nets through the
semantic web. In: Proceedings of the 1st European Seman-
tic Web Symposium, Heraklion, Greece, 2004. LNCS 3053.
Springer, Berlin Heidelberg New York, pp 284–298 (2004)

20. Gašević, D., Damjanović, V., Devedžić, V.: Analysis of the
MDA standards in ontological engineering. In: Proceedings
of the 6th International Conference of Information Technol-
ogy, Bhubaneswar, India, pp. 193–196 (2003)

21. Gómez-Pérez, A., Corcho, O.: Ontology languages for the
semantic web. IEEE Intell. Syst. 17(1), 54–60 (2002)

22. Gruber, T.: A translation approach to portable ontology spec-
ifications. Knowl. Acquis. 5(2), 199–220 (1993)

23. Juerjens, J.: Secure Systems Development with UML.
Springer, Berlin Heidelberg New York (2003)

24. Karp, P., Myers, K., Gruber, T.: The generic frame protocol.
In: Proceedings of the 1995 International Joint Conference on
Artificial Intelligence, Monreal, Canada. pp. 768–774 (1995)

25. Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K.,
Kokar, M., Smith, J.: UML for ontology development. Knowl.
Eng. Rev. 17(1), 61–64 (2002)

26. McGuinness, D., Fikes, R., Hendler, J., Stein, L.: DAML+OIL:
An Ontology Language for the Semantic Web. IEEE Intell.
Syst. 17(5), 72–80 (2002)

27. Miller, J., Mukerji, J: (eds.) MDA Guide: Version 1.0,
OMG Document: omg/2003-05-01 http://www.omg.org/mda/
mda_files/MDA_Guide_Version1-0.pdf (2003)

28. Noy, N.F., McGuinness, D.: Ontology Development 101: A
Guide to Creating Your First Ontology. TR SMI-2001-0880,
Knowledge Systems Laboratory, Stanford University (2001)

29. Noy, N.F., Fergerson, R., Musen, M.: The knowledge model
of Protégé-2000: combining interoperability and flexibility. In:
Proceedings of the 12th International Conference on Knowl-
edge Acquisition, Modeling and Management, Juan-les-Pins,
France, pp. 17–32 (2000)

30. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.,
Musen, M.: Creating Semantic Web Contents with Protégé-
2000. IEEE Intell. Syst. 16(2), 60–71 (2001)

31. Ontology Definition Metamodel Preliminary Revised Sub-
mission to OMG RFP ad/2003-03-40, Volume 1 http://co-
dip.grci.com/odm/draft (2004)

32. Ontology Definition Metamodel, DSTC Initial Submis-
sion. OMG Document ad/2003-08-01 http://www.omg.org/cgi-
bin/doc?ad/03-08-01 (2003)

33. Ontology Definition Metamodel, Gentleware Initial Submis-
sion. OMG Document ad/03-08-09 http://www.omg.org/cgi-
bin/doc?ad/03-08-09 (2003)

34. Ontology Definition Metamodel, IBM Initial Submis-
sion. OMG Document ad/03-07-02 http://www.omg.org/cgi-
bin/doc?ad/03-07-02 (2003)

35. OMG Meta Object Facility (MOF) Specification v1.4.
OMG Document formal/02-04-03 http://www.omg.org/cgi-
bin/apps/doc?formal/02-04-03.pdf (2002)

36. OMG Ontology Definition Metamodel Request for Proposal.
OMG Document: ad/2003-03-40 http://www.omg.org/cgi-
bin/doc?ad/2003-03-40 (2003)

37. Ontology Definition Metamodel, Sandpiper Software Inc
and KSL Initial Submission. OMG Document ad/03-08-06
http://www.omg.org/cgi-bin/doc?ad/03-08-06 (2003)

38. OMG Unified Modeling Language Specification v1.5.
OMG Document formal/03-03-01 http://www.omg.org/cgi-
bin/apps/doc?formal/03-03-01.zip (2003)

39. OMG XMI Specification, v1.2. OMG Document formal/02-
01-01 http://www.omg.org/cgi-bin/doc?formal/2002-01-01
(2002)

40. Seidewitz, E.: What Models Mean. IEEE Software 20(5),
26–32 (2003)

41. Selic, B.: The pragmatics of model-driven Development. IEEE
Software 20(5), 19–25 (2003)

42. Sigel, J.: Developing in OMG’s Model-Driven Architecture,
Revision 2.6. OMG’s White Paper ftp://ftp.omg.org/pub/docs/-
omg/01-12-01.pdf (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

